Eroglu, A.Hajibayov, M. G.2024-11-072024-11-0720171065-24691476-8291https://doi.org/10.1080/10652469.2016.1261339https://hdl.handle.net/11480/16191Let K = [0,infinity) x R be the Laguerre hypergroup which is the fundamental manifold of the radial function space for the Heisenberg group, vertical bar.vertical bar its homogeneous norm and Q its homogeneous dimension. In this paper we prove the two weighted inequality for fractional integrals I-beta on K. The obtained result is an analog of the Heinig result [Heinig HP. Weighted norm inequalities for classes of operators. Indiana Univ Math J. 1984;33(4):573-582] for fractional integrals on Laguerre hypergroup. Furthermore, the Stein-Weiss inequality for I-beta is proved as an application of this result.eninfo:eu-repo/semantics/closedAccessLaguerre hypergroupfractional integralStein-Weiss inequalityTwo weighted inequalities for fractional integrals on Laguerre hypergroupArticle28318519410.1080/10652469.2016.12613392-s2.0-85000578280Q2WOS:000395159500003Q2