Sennik, ErdemSennik, BusraAlev, OnurKilinc, NecmettinYilmaz, FarukOzturk, Zafer Ziya2019-08-012019-08-0120160021-89951097-4628https://dx.doi.org/10.1002/app.43641https://hdl.handle.net/11480/3605We report the synthesis, characterization, and gas sensing properties of a styrene copolymer bearing -thiophene end group and fullerene (C-60) pendant moieties P(S-co-CMS-C-60). First, the copolymer of styrene (S) and chloromethylstyrene (CMS) monomers was prepared in bulk via a bimolecular nitroxide-mediated radical polymerization (NMP) technique using benzoyl peroxide (BPO) as the radical initiator and nitroxy-functional thiophene compound (Thi-TEMPO) as the co-radical and this gave -thiophene end-capped copolymer P(S-co-CMS). The chloromethylstyrene units of P(S-co-CMS) allowed further side-chain functionalization onto P(S-co-CMS). The obtained P(S-co-CMS) was then reacted with sodium azide (NaN3) and this led to the copolymer with pendant azide groups, P(S-co-CMS-N-3), and then grafted with electron-acceptor C-60 via the reaction between N-3 and C-60. The final product was characterized by using NMR, FTIR, and UV-vis methods. Electrical characterization of P(S-co-CMS-C-60) thin film was also investigated at between 30 and 100 degrees C as the ramps of 10 degrees C. Temperature dependent electrical characterization results showed that P(S-co-CMS-C-60) thin film behaves like a semiconductor. Furthermore, P(S-co-CMS-C-60) was employed as the sensing layer to investigate triethylamine (TEA), hydrogen (H-2), acetone, and ethanol sensing properties at 100 degrees C. The results revealed that P(S-co-CMS-C-60) thin film has a sensing ability to H-2. (c) 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43641.eninfo:eu-repo/semantics/closedAccessband structureelectrical characterizationfullerenegas sensorpolystyrenethin filmalpha-Thiophene end-capped styrene copolymer containing fullerene pendant moieties: Synthesis, characterization, and gas sensing propertiesArticle1332710.1002/app.436412-s2.0-84979492205Q2WOS:000374667900020Q2