Keles, Ayse Ikinci2024-11-072024-11-0720200065-12811618-0372https://doi.org/10.1016/j.acthis.2020.151652https://hdl.handle.net/11480/14135Several studies have investigated the effects of the electromagnetic field (EMF) on the central nervous system. However, we encountered no studies of the effects of EMF applied in the prenatal period on the offspring vertebrae. The aim of this study is to investigate the effect of a 900 megahertz (MHz) EMF applied to rat dams in the prenatal period on the vertebrae of rat pups. Female Sprague Dawley rats weighing 180 250 g were used in the experiment. Rats identified as pregnant were divided into two groups, control (n = 3) and EMF (n = 3). No EMF was applied to the control group pregnant rats. EMF was applied to the EMF group rats for 1 h daily on an equal and standard basis on prenatal days 13 21. All newborn rat pups were divided into pup control (n = 6) (PC) and pup EMF (n = 6) (PEMF) groups, and no treatment was performed on either. All animals were decapitated on day 32, and the spinal cord in the upper thoracic region was harvested. Vertebral tissues were subjected to routine histological procedures. Histopathological examination revealed that PEMF group vertebral cartilage had been converted into bone tissue. Comparison of central canal diameter and area values between the PEMF group and the PC group revealed statistically significant increases in the PEMF group (p = 0.000 and p = 0.001, respectively). Statistical analysis revealed no significant difference in mean body weights between the two groups (p > 0.530). Based on these findings, we think that 900 MHz EMF applied in the prenatal period affects the development of the vertebrae. This effect causes pathological changes in the rat pup vertebrae. These findings now raise the question of whether EMF also has an impact on neurological and neurosurgical diseases involving the vertebrae.eninfo:eu-repo/semantics/closedAccessElectromagnetic fieldVertebraeCentral canalPrenatal periodRat pupsStereologyMorphological changes in the vertebrae and central canal of rat pups born after exposure to the electromagnetic field of pregnant ratsArticle122810.1016/j.acthis.2020.151652331900552-s2.0-85096228076Q3WOS:000593955400019Q4