Gül, ErtuğrulÖztürk, Serkan2024-11-072024-11-0720202564-6605https://doi.org/10.28948/ngmuh.654519https://search.trdizin.gov.tr/tr/yayin/detay/417774https://hdl.handle.net/11480/12517Nternet ve bilgisayar teknolojilerinin gelişmesi ile görüntü sahteciliği tespiti önem kazanmıştır. Ayrıca, görüntü iyileştirme uygulamalarında kullanılan tekniklerin iyi başarım göstermesi için görüntülere uygulanan saldırı çeşitlerinin ve bölgelerinin doğru bir şekilde tespit edilmesi gerekmektedir. Bu çalışmada, görüntülere uygulanan saldırı çeşitlerini ve saldırı bölgelerini tespit etmek için ön eğitimli AlexNet ve GoogLeNet evrişimli sinir ağları destekli görüntü sahtecilik tespiti yöntemi önerilmiştir. Öncelikle; MICC-F2000 veri kümesinde bulunan görüntüler kullanılarak orijinal ve saldırılmış görüntülerin olduğu görüntü sahteciliği tespiti veri kümesi oluşturulmuştur. Saldırılmış görüntüleri elde etmek için Gauss bulanıklaştırma, medyan filtreleme, Gauss gürültü ekleme, Poisson gürültü ekleme ve keskinleştirme saldırıları kullanılmıştır. Daha sonra, ön eğitimli AlexNet ve GoogLeNet ağlarının tam bağlantılı katmanları deneysel veri kümesindeki altı veri sınıfı için yeni tam bağlantılı katmanlar ile değiştirilmiştir. Oluşturulan AlexNet ve GoogLeNet destekli ağlar hazırlanan görüntü sahteciliği tespiti veri kümesi ile eğitilerek test edilmiştir. Faklı hiperparametre değerleri için ağların başarımları ölçülmüştür. AlexNet destekli ağlarda en yüksek başarım %99,48’lik doğruluk oranı ile elde edilirken, GoogLeNet destekli ağlarda ise en yüksek başarım %99,92’lik doğruluk oranı ile elde edilmiştir. Ayrıca, geliştirilen AlexNet ve GoogLeNet destekli sahtecilik tespiti yönteminin CoMoFoD veri kümesinden alınan görüntüler üzerindeki saldırıları tespit edebilme başarısı gözlemlenmiştir. Deneysel sonuçlar önerilen yöntemin başarılı bir şekilde görüntü sahteciliği tespiti için kullanılabileceğini göstermiştir.trinfo:eu-repo/semantics/openAccessBilgisayar BilimleriYazılım MühendisliğiGörüntüleme Bilimi ve Fotoğraf TeknolojisiBilgisayar BilimleriBilgi SistemleriBilgisayar BilimleriTeori ve MetotlarBilgisayar BilimleriYapay ZekaÖN EĞİTİMLİ EVRİŞİMLİ SİNİR AĞLARI DESTEKLİ GÖRÜNTÜ SAHTECİLİK TESPİTİ YÖNTEMİArticle9270571410.28948/ngmuh.654519417774