Cay, NurdanMendi, Bokebatur Ahmet RasitBatur, HalitcanErdogan, Fazli2024-11-072024-11-0720221867-10711867-108Xhttps://doi.org/10.1007/s11604-022-01278-xhttps://hdl.handle.net/11480/15672Purpose To evaluate the diagnostic capability of radiomics in distinguishing lipoma and Atypic Lipomatous Tumors/Well-Differentiated Liposarcomas (ALT/WDL) with Magnetic Resonance Imaging (MRI). Materials and methods Patients with a histopathologic diagnosis of lipoma (n = 45) and ALT/WDL (n = 20), who had undergone pre-surgery or pre-biopsy MRI, were enrolled. The MDM2 amplification was accepted as gold-standard test. The T1-weighted turbo spin echo images were used for radiomics analysis. Utility of a predefined standardized imaging protocol and a single type of 1.5 T scanner were sought as inclusion criteria. Radiomics parameters that show a certain level of reproducibility were included in the study and supplied to Support Vector Machine (SVM) as a machine learning method. Results No significant difference was found in terms of gender, location and age between the lipoma and ALT/WDL groups. Sixty-five parameters were accepted as reproducible. Fifty-seven parameters were able to distinguish the two groups significantly (AUC range 0.564-0.902). Diagnostic performance of the SVM was one of the highest among literature findings: sensitivity = 96.8% (95% CI 94.03-98.39%), specificity = 93.72% (95% CI 86.36-97.73%) and AUC = 0.987 (95% CI 0.972-0.999). Conclusion Although radiomics has been proven to be useful in previous literature regarding discrimination of lipomas and ALT/WDLs, we found that its accuracy could further be improved with utility of standardized hardware, imaging protocols and incorporation of machine learning methods.eninfo:eu-repo/semantics/closedAccessAtypical lipomatous tumorLipomaMachine learningMRIRadiomicsWell-differentiated liposarcomaDiscrimination of lipoma from atypical lipomatous tumor/well-differentiated liposarcoma using magnetic resonance imaging radiomics combined with machine learningArticle40995196010.1007/s11604-022-01278-x354306772-s2.0-85128237076Q2WOS:000783032500001Q3