Alp, MuratIrmak, NurettinSzalay, Laszlo2019-08-012019-08-0120151224-17841844-0835https://dx.doi.org/10.1515/auom-2015-0022https://hdl.handle.net/11480/4033Given a positive integer A not equal 2. In this paper, we show that there do not exist two positive integer pairs {a, b} not equal {c, d} such that the values of ac + 1, ad + 1 and bc + 1, bd + 1 are the terms of the sequence {G(n)}(n >= 0) which satisfies the recurrence relation G(n) = AG(n-1) - G(n-2) with the initial values G(0) = 0, G(1) = 1.eninfo:eu-repo/semantics/openAccessReduced diophantine quadruplesbinary recurrencesReduced diophantine quadruples with the binary recurrence G(n) = AG(n-1) - G(n-2)Article232233110.1515/auom-2015-00222-s2.0-84928954473Q3WOS:000359611800002Q4