Yazar "Acikgoz, Ozgen" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A NUMERICAL STUDY AIMED AT FINDING OPTIMAL ARTIFICIAL NEURAL NETWORK MODEL COVERING EXPERIMENTALLY OBTAINED HEAT TRANSFER CHARACTERISTICS OF HYDRONIC UNDERFLOOR RADIANT HEATING SYSTEMS RUNNING VARIOUS NANOFLUIDS(Begell House Inc, 2022) Colak, Andac Batur; Karakoyun, Yakup; Acikgoz, Ozgen; Yumurtaci, Zehra; Dalkilic, Ahmet SelimIn this paper, three unique artificial neural network models have been developed for three different working fluid cases to predict the radiative, convective, and total heat transfer coefficients over the floor surface of radiant floor heating system in a real-size room. Pure water, multiwall carbon nanotube with 0.7 vol.% and 0.07 vol.% contents, and aluminium oxide with 1.26 vol.% content are the operating fluids having inlet temperatures ranging from 30 degrees C to 60 degrees C, while the mass flow rates are 0.056, 0.09, and 0.125 kg/s. The performances of multilayer perceptron networks with the Levenberg-Marquardt, Bayesian regularization, and scaled conjugate gradient as training algorithms and different neuron numbers have been developed and the Levenberg-Marquardt algorithm, having the highest prediction performance with 99% accuracy, is selected as a result of detailed computational numerical analyses. This study can be considered as a pioneer artificial neural network one on the floor heating systems having nanofluids.Öğe Machine learning approach to predict the heat transfer coefficients pertaining to a radiant cooling system coupled with mixed and forced convection(Elsevier France-Editions Scientifiques Medicales Elsevier, 2022) Acikgoz, Ozgen; Colak, Andac Batur; Camci, Muhammet; Karakoyun, Yakup; Dalkilic, Ahmet SelimMixed convection phenomenon over radiant cooled surfaces with displacement ventilation in living environments is becoming a popular issue due to the airborne viruses and energy economy. Artificial neural networks are one of the machine learning methods that are widely evaluated as an engineering tool. In the current study, heat transfer coefficients for a radiant wall cooling system coupled with mixed and forced convection have been predicted by a machine learning approach. This approach should be noted as a first experimental investigation couple with an artificial neural network analysis in the open sources in which mixed convection systems in real sized living environments is examined. Experimentally obtained heat transfer coefficients have been used in the development of the feed forward back propagation multi-layer perceptron network structure. So as to analyze the impact of the input factors on the prediction performance, two neural network structures with dissimilar input parameters such as various temperatures, velocities, and heat transfer rates have been developed. By means of feed forward back propagation multi-layer perceptron neural network algorithms, convection, radiation, and total heat transfer coefficients have been predicted using the experimentally acquired dataset including 35 data points belonging to the mixed and forced convection conditions. Training, validation, and test data groups include 70%, 15%, and 15% of the dataset, in turn. Training algorithm has been computed via LevenbergMarquardt one with 10 neurons in the hidden layer. The findings obtained from the computational solution have been evaluated as a result of the contrast with the target data with in the +/- 5% deviation band for all heat transfer coefficients. The performance factors have been computed and the estimation precision of the numerical models has been thoroughly examined.Öğe Prediction of heat transfer coefficient, pressure drop, and overall cost of double-pipe heat exchangers using the artificial neural network(Elsevier, 2022) Colak, Andac Batur; Acikgoz, Ozgen; Mercan, Hatice; Dalkilic, Ahmet Selim; Wongwises, SomchaiTypically, success in the estimation of machine learning is expected to rise with increasing input parameters, whereas the noise issue may rarely arise owing to redundant input factors undesirably influencing the learning algorithm. The parameters such as overall heat transfer coefficient, pressure drop, and overall cost have been determined by two different artificial neural networks evaluated by a multi-layer perceptron model. Using the Levenberg-Marquardt training algorithm, in the first model input layer, a total of 10 input parameters rho, n(p), k(1), Re-1, f(i), Re-2, f(o), n(s), P-1 and P-2 have been defined, while the second involves 8 input parameters by subtracting pumping powers from the first one, thus the noise issue has been investigated using unnecessary input parameters. Overall heat transfer coefficient, tube/annulus sides pressure drops, and overall cost have been estimated with deviations of 0.16%, 0.23%, 0.02%, and 0.003% via Model 1, 0.02%, 0.18%, 0.16%, and 0.15% via Model 2, respectively. Moreover, Model 1 results in the best mean squared errors for annulus side pressure drop and overall cost with the values of 2.54E-04 and 1.93E-04, correspondingly, whereas Model 2 yields the best values of 1.11E-04 and 1.90E-04 for overall heat transfer coefficient and tube side pressure drop, sequentially.Öğe Single phase flow of nanofluid including graphite and water in a microchannel (vol 56, 1, 2020)(Springer, 2020) Yildiz, Oguzhan; Acikgoz, Ozgen; Yildiz, Guldem; Bayrak, Mustafa; Dalkilic, Ahmet Selim; Wongwises, Somchai[Abstract Not Available]