Yazar "Akansu, Y. E." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Active control of flow around a square prism by slot jet injection(E D P SCIENCES, 2013) Firat, E.; Akansu, Y. E.; Hacialiogullari, M.; Dancova, P; Novonty, PThe main aim of the experimental study is to determine both the most effective injection surface and rate in order to ensure minimum drag and fluctuating forces on a square prism subjected to crossflow. All predetermined jet injection surfaces i.e. front, side, and rear, tested separately for injection ratios of IR = 0, 1, 1.5, 2 at Reynolds number of Re = 16,000. Surface pressures were measured by differential pressure transducer whereas instantaneous velocity measurements were performed by using multichannel Constant Temperature Anemometer (CTA). It was concluded that jet injection, especially from the rear surface, brought noticeable improvements to the flow characteristics of a square prism. For rear jet configuration with IR = 1.5, the mean drag coefficient ((C-DT) over bar) was reduced to 79.4% and C-P RMS level on side surfaces was reduced to 20% of that of the single square prism. In addition, instantaneous flow visualization photographs and Strouhal number (St) distribution across the injection ratio were also presented to identify the flow patterns and underlying mechanism of drag and fluctuating force reduction of square prism with rear jet configuration.Öğe Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator(E D P SCIENCES, 2013) Akansu, Y. E.; Karakaya, F.; Sanlisoy, A.; Dancova, P; Novonty, PIn this study, effect of plasma actuator on a flat plate and manipulation of flow separation on NACA0015 airfoil with plasma actuator at low Reynolds numbers were experimentally investigated. In the first section of the study, plasma actuator which consists of positive and grounded electrode couple and dielectric layer, located on a flat plate was actuated at different frequencies and peak to peak voltages in range of 3-5 kHz and 6-12 kV respectively. The induced air flow velocity on the surface of flat plate was measured by pitot tube at different locations behind the actuator. The influence of dielectric thickness and unsteady actuation with duty cycle was also examined. In the second section, the effect of plasma actuator on NACA0015 airfoil was studied at Reynolds number 15000 and 30000. Four plasma actuators were placed at x/C = 0.1, 0.3, 0.5 and 0.9, and different electrode combinations were activated by sinusoidal signal. Flow visualizations were done when the attack angles were 0 degrees, 5 degrees, 10 degrees, 15 degrees and 20 degrees. The results indicate that up to the 15 degrees attack angle, the separated flow was reattached by plasma actuator at 12kV peak to peak voltage and 4 kHz frequency. However, 12 kV(pp) voltage was insufficient to reattach the flow at 20 angle of attack. The separated flow could be reattached by increasing the voltage up to 13 kV. Lift coefficient was also increased by the manipulated flow over the airfoil. Results showed that even high attack angles, the actuators can control the flow separation and prevent the airfoil from stall at low Reynolds numbers.