Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Akyol, E." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Estimation of the Carbon Footprint in Dairy Sheep Farm
    (Islamic Azad Univ, Rasht, 2020) Ceyhan, A.; Akyol, E.; Unalan, A.; Cinar, S.; Ali, W.
    By 2050, the earth's population is expected to be more than 9 billion. The need for secure food and water supply will force agriculture to increase production. The major greenhouse gases (GHGs) from the livestock sector are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) throughout the production process. These gases are the key contributor to an increasing earth's surface temperature. Global warming occurs as a result of gases emitted by humans into the atmosphere, creating a greenhouse effect. The livestock sector contributes between 25 and 40% of anthropogenic methane emissions. Human-derived animal production contributes to global warming by producing 9% of CO2 emissions, 35-40% of CH4, and 65% of N2O gas emissions. Carbon footprint is a measure of the damage that human activities cause to the environment in terms of the amount of GHGs produced as a unit of CO2. The most common method used in carbon footprint calculations is the Tier 1-2-3 approach developed by the intergovernmental panel on climate change (IPCC). In this study, the carbon footprint of a dairy sheep farm in Nigde province was calculated using Tier 1 method to determine global warming potential. The carbon footprint of this farm from both sources like N2O and CH4 was 85535.2 CO(2)eq year(-1). The estimation of GHGs is very obligatory to evaluate global warming stress and avoidance from some fatal diseases.
  • Küçük Resim Yok
    Öğe
    Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen-worker dimorphism
    (WILEY, 2011) Linksvayer, T. A.; Kaftanoglu, O.; Akyol, E.; Blatch, S.; Amdam, G. V.; Page, R. E., Jr.
    Social evolution in honey bees has produced strong queen-worker dimorphism for plastic traits that depend on larval nutrition. The honey bee developmental programme includes both larval components that determine plastic growth responses to larval nutrition and nurse components that regulate larval nutrition. We studied how these two components contribute to variation in worker and queen body size and ovary size for two pairs of honey bee lineages that show similar differences in worker body-ovary size allometry but have diverged over different evolutionary timescales. Our results indicate that the lineages have diverged for both nurse and larval developmental components, that rapid changes in worker body-ovary size allometry may disrupt queen development and that queen-worker dimorphism arises mainly from discrete nurse-provided nutritional environments, not from a developmental switch that converts variable nutritional environments into discrete phenotypes. Both larval and nurse components have likely contributed to the evolution of queen-worker dimorphism.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim