Yazar "Anwar, Haseeb" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Ginkgetin: A natural biflavone with versatile pharmacological activities(Pergamon-Elsevier Science Ltd, 2020) Adnan, Muhammad; Rasul, Azhar; Hussain, Ghulam; Shah, Muhammad Ajmal; Zahoor, Muhammad Kashif; Anwar, Haseeb; Sarfraz, IqraNatural products, being richly endowed with curative powers, have become spotlight for biomedical and pharmaceutical research to develop novel therapeutics during recent years. Ginkgetin (GK), a natural non-toxic biflavone, has been shown to exhibit anti-cancer, anti-inflammatory, anti-microbial, anti-adipogenic, and neuroprotective activities. GK combats cancer progression by arresting cell cycle, inducing apoptosis, stimulating autophagy, and targeting many deregulated signaling pathways such as JAK/STAT and MAPKs. GKhalts inflammation mediators like interleukins, iNOS, COX-2, PGE2, NF-0, and acts as an inhibitor of PLA2. GK shows strong neuroprotection against oxidative stress-promoted cell death, inhibits cerebral micro -hemorrhage, decreases neurologic deficits, and halts apoptosis of neurons. GK also acts as anti-fungal, anti-viral, anti-bacterial, leishmanicidal and anti-plasmodial agent. GK shows substantial preventive or therapeutic effects in in vivo models of many diseases including atherosclerosis, cancer, neumdegenerative, hepatic, influenza, and inflammatory diseases. Based on various computational, in vitro and in vivo evidences, this article demonstrates the potential of ginkgetin for development of therapeutics against various diseases. Although GK has been systematically studied from pharmacological point of view, a vast field of pharmacokinetics, pre-clinical and clinical studies is still open for the researchers to fully validate its potential for the treatment of various diseases.Öğe Jaceosidin: A Natural Flavone with Versatile Pharmacological and Biological Activities(Bentham Science Publ Ltd, 2021) Nageen, Bushra; Rasul, Azhar; Hussain, Ghulam; Shah, Muhammad A.; Anwar, Haseeb; Hussain, Syed M.; Uddin, Md SahabNature always remains an inexhaustible source of treasures for mankind. It remains a mystery for every challenge until the completion of the challenge. While we talk about the complicated health issues, nature offers us a great variety of chemical scaffolds and their various moieties packed in the form of natural products e.g., plants, microorganisms (fungi, algae, protozoa), and terrestrial vertebrates and invertebrates. This review article is an update about jaceosidin, a bioactive flavone, from genus Artemisia. This potentially active compound exhibits a variety of pharmacological activities including anti-inflammatory, anti-oxidant, anti-bacterial, anti-allergic and anti-cancer activities. The bioactivities and the therapeutic action of jaceosidin, especially the modulation of different cell signaling pathways (ERK1/2, NF-kappa B, PI3K/Akt and ATM-Chk1/2) which become deregulated in various pathological disorders, have been focused here. The reported data suggest that the bioavailability of this anti-cancer compound should be enhanced by utilizing various chemical, biological and computational techniques. Moreover, it is recommended that researchers and scientists should work on exploring the mode of action of this particular flavone to precede it further as a potent anti-cancer compound.Öğe Neurada procumbens promotes functions regain in a mouse model of mechanically induced sciatic nerve injury(Univ Karachi, 2019) Rasul, Azhar; Al-Shawi, Ali A. A.; Malik, Shoaib Ahmad; Anwar, Haseeb; Rasool, Bilal; Razzaq, Aroona; Aziz, NimraPeripheral nerve injury is a complex condition which results in restricted physical activity. Despite the tremendous efforts to figure out effective remedies, the complete functional retrieval is still a goal to be achieved. So, the need of hour is the exploration of potential natural compounds to recover this functional loss. Here, we have investigated the role of a local plant Neurada procumbens in ameliorating the functional recovery after an induced nerve compression injury in a mouse model. A dose of N. procumbens (50mg/kg of body weight) was administered orally from the day of injury to onwards. The motor functional recovery was assessed by evaluating muscle grip strength and sciatic functional index; while the sensory functions were gauged by the hotplate test. The serological parameters were carried out to analyze the effect of N. procumbens on oxidative stress level. The recovery of sensory and motor functions was significantly improved and perceived earlier in the treatment group. Moreover, the elevated antioxidant level was statistically significant in the treatment group. These results indicate that the supplementation of N. procumbens accelerates functional recovery after sciatic nerve crush injury.Öğe Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways(Pergamon-Elsevier Science Ltd, 2020) Kanwal, Nazia; Rasul, Azhar; Hussain, Ghulam; Anwar, Haseeb; Shah, Muhammad Ajmal; Sarfraz, Iqra; Riaz, AmmaraNerium oleander, a member of family Apocynaceae, is commonly known as Kaner in various countries of Asia and Mediterranean region. This plant has been renowned to possess significant therapeutic potential due to its various bioactive compounds which have been isolated from this plant e.g., cardiac glycosides, oleandrin, a-tocopherol, digitoxingenin, umsolic acid, quercetin, odorosides, and adigoside. Oleandrin, a saponin glycoside is one of the most potent and pharmacologically active phytochemicals of N. oleander. Its remarkable pharmacotherapeutic potential have been interpreted as anticancer, anti-inflammatory, anti-HIV, neuropmtective, antimicrobial and antioxidant. This particular bioactive entity is known to target the multiple deregulated signaling cascades of cancer such as NF-kappa B, MAPK, and PI3K/Akt. The main focus of the current study is to comprehend the action mechanisms of oleandrin against various pathological conditions. The current review is a comprehensive summary to facilitate the researchers to understand the pharmacological position of the oleandrin in the arena of drug discovery, representing this compound as a new drug candidate for further researches. Moreover, in vivo and in silico based studies are required to explore the mechanistic approaches regarding the pharmacokinetics and biosafety profiling of this compound to completely track its candidature status in natural drug discovery.