Yazar "Asim, Arslan" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An overview of genome-wide association mapping studies in Poaceae species (model crops: wheat and rice)(Springer, 2022) Zia, Muhammad Abu Bakar; Yousaf, Muhammad Farhan; Asim, Arslan; Naeem, MuhammadThere is a significant interest while utilizing association mapping technique to determine the genes which are accountable for numerical dissimilarity of the more complex characteristics with agronomic and evolutionary significance. Recently improvements have been made in genomic technology, which motivates for the exploitation of natural diversity, and establishment of more vigorous and strong statistical analysis methods. It creates association mapping technique more demanding and reasonable to plant research programs. Genome-wide association mapping technique recognizes quantitative trait loci (QTLs) by studying the marker-trait associations which could be credited to the power of linkage disequilibrium between different molecular markers and functional polymorphisms through a pool of diversified germplasm. In this review, we will describe an overview of genetic mapping and the current status of association mapping studies in model cereal crops i.e., wheat and rice.Öğe Evaluation of miRNA Mediated Networking and Feedback Against Drought, Heat and Combined Stress Tolerance in Potato (Solanum tuberosum L.)(Springer, 2020) Asim, Arslan; Demirel, Ufuk; Bakhsh, Allah; Gokce, Zahide Neslihan Ozturk[Abstract Not Available]Öğe Individual and combined effect of drought and heat stresses in contrasting potato cultivars overexpressing miR172b-3p(Tubitak Scientific & Technological Research Council Turkey, 2021) Asim, Arslan; Gokce, Zahide Neslihan Ozturk; Bakhsh, Allah; Cayli, Ilknur Tindas; Aksoy, Emre; Csliskan, Sevgi; Caliskan, Mehmet EminMicroRNAs (miRNAs) are essential players of plant defence systems because of their involvement in reprogramming gene expression under adverse environmental conditions including drought and heat, which are considered major players in limiting crop productivity. miR172b-3p was previously determined as a remarkable stress-responsive miRNA in our next-generation sequencing (NGS) analysis in potato. This study aims to understand the functions of miR172b-3p and its target (ERTF RAP2-7-like) under drought, heat, and combined treatments by overexpressing the miR172b-3p in stress-tolerant (Unica) and sensitive (Russet Burbank) potato cultivars. miR172b-3p overexpression in transgenic lines suppressed the ERTF RAP2-7-like expression leading to enhanced carbon fixation efficiency. Meanwhile, the accumulation of hydrogen peroxide (H2O2) was reduced in both cultivars, proving that it is involved in the front-line tolerance mechanism against individual drought, heat, and their combination. In conclusion, our results prove that the stress tolerance could be enhanced by miR172b-3p-mediated negative regulation of ERTF RAP2-7-like gene in potato under drought, heat, and their combination. Our findings represent the first step towards the improvement of tolerance against multiple abiotic stresses in potato.Öğe Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes(Frontiers Media Sa, 2020) Demirel, Ufuk; Morris, Wayne L.; Ducreux, Laurence J. M.; Yavuz, Caner; Asim, Arslan; Tindas, Ilknur; Campbell, RaymondPotato production is often constrained by abiotic stresses such as drought and high temperatures which are often present in combination. In the present work, we aimed to identify key mechanisms and processes underlying single and combined abiotic stress tolerance by comparative analysis of tolerant and susceptible cultivars. Physiological data indicated that the cultivars Desiree and Unica were stress tolerant while Agria and Russett Burbank were stress susceptible. Abiotic stress caused a greater reduction of photosynthetic carbon assimilation in the susceptible cultivars which was associated with a lower leaf transpiration rate. Oxidative stress, as estimated by the accumulation of malondialdehyde was not induced by stress treatments in any of the genotypes with the exception of drought stress in Russett Burbank. Stress treatment resulted in increases in ascorbate peroxidase activity in all cultivars except Agria which increased catalase activity in response to stress. Transcript profiling highlighted a decrease in the abundance of transcripts encoding proteins associated with PSII light harvesting complex in stress tolerant cultivars. Furthermore, stress tolerant cultivars accumulated fewer transcripts encoding a type-1 metacaspase implicated in programmed cell death. Stress tolerant cultivars exhibited stronger expression of genes associated with plant growth and development, hormone metabolism and primary and secondary metabolism than stress susceptible cultivars. Metabolite profiling revealed accumulation of proline in all genotypes following drought stress that was partially suppressed in combined heat and drought. On the contrary, the sugar alcohols inositol and mannitol were strongly accumulated under heat and combined heat and drought stress while galactinol was most strongly accumulated under drought. Combined heat and drought also resulted in the accumulation of Valine, isoleucine, and lysine in all genotypes. These data indicate that single and multiple abiotic stress tolerance in potato is associated with a maintenance of CO2 assimilation and protection of PSII by a reduction of light harvesting capacity. The data further suggests that stress tolerant cultivars suppress cell death and maintain growth and development via fine tuning of hormone signaling, and primary and secondary metabolism. This study highlights potential targets for the development of stress tolerant potato cultivars.Öğe Response of Contrasting Potato Cultivars to Single and Combined Abiotic Stresses Harboring miR156d-3p(Springer, 2023) Asim, Arslan; Demirel, Ufuk; Bakhsh, Allah; Gokce, Zahide Neslihan Ozturk[Abstract Not Available]