Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Badr, Gamal" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Cellular targets and molecular activity mechanisms of bee venom in cancer: recent trends and developments
    (Taylor & Francis Inc, 2022) Varol, Aysegul; Sezen, Serap; Evcimen, Dilhan; Zarepour, Atefeh; Ulus, Gonul; Zarrabi, Ali; Badr, Gamal
    Bee venom therapy is known as a traditional approach to curing many medical conditions such as arthritis, pain and rheumatism. Bee venom also provides promising potential for treating many cancers such as breast, lung, ovary, stomach, kidney, prostate, cervical, colon and esophageal cancers, osteosarcoma, leukemia, melanoma and hepatocellular carcinoma. We therefore focused not only on the molecular activity mechanisms and cellular targets of bee venom and its components, but also on modern solutions as cutting-edge nanotechnological advances to overcome existing bottlenecks, and the latest advances in the anticancer application of bee venom in clinical settings.
  • Küçük Resim Yok
    Öğe
    Induction of liver fibrosis by CCl4 mediates pathological alterations in the spleen and lymph nodes: The potential therapeutic role of propolis
    (Elsevier, 2021) Sayed, Eman A.; Badr, Gamal; Hassan, Khadiga Abdel-Hameed; Waly, Hanan; Ozdemir, Betul; Mahmoud, Mohamed H.; Alamery, Salman
    In an animal models, carbon tetrachloride (CCl4) is a carcinogenic agent that causes liver fibrosis. The current study aims to investigate whether induction in liver-fibrosis by CCl4 in the mouse model could promote the initiation of fibrosis in lymph node and spleen due to sustained increase of inflammatory signals and also aimed to clarify the protective therapeutic effects of propolis. The male mice (BALB/c) were categorized into three experimental sets and each group involved 15 mice. Control group falls into first group; group-II and group-III were injected with CCl4 to induce liver-fibrosis and oral supplementation with propolis was provided in group-III for 4-weeks. A major improvement with hepatic collagen and alpha-smooth muscle actin (alpha-SMA) production was aligned with the activation of liver fibrosis from CCl4. Mice treated with CCl4 exhibited collagen deposition towards liver sections, pathological alterations in spleen and lymph node architectures, and a significantly increase the circulation of both T&B cells in secondary lymphoid organs. Mechanically, the secondary lymphoid organs treated with CCl4 in mice exposed a positive growth in alpha-SMA and collagen expression, increased in proinflammatory cytokine levels and a significant increase in TGF-beta, NO and ROS levels. A manifest intensification in the expression of Nrf2, COX-2, and eNOS and upregulation of ASK1 and P38 phosphorylation. Interestingly, addition of propolis-treated CCl4 mice, substantially suppressed deposition of liver collagen, repealed inflammatory signals and resorted CCl4-mediated alterations in signaling cascades, thereby repairing the architectures of the secondary lymphoid organs. Our findings revealed benefits of propolis against fibrotic complications and enhancing secondary lymphoid organ architecture. (C) 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
  • Küçük Resim Yok
    Öğe
    The therapeutic mechanisms of propolis against CCl4-mediated liver injury by mediating apoptosis of activated hepatic stellate cells and improving the hepatic architecture through PI3K/AKT/mTOR, TGF-?/Smad2, Bcl2/BAX/P53 and iNOS signaling pathways
    (Cell Physiol Biochem Press GmbH & Co KG, 2019) Badr, Gamal; Sayed, Eman Abdo; Waly, Hanan; Hassan, Khadiga Abdel-Hameed; Mahmoud, Mohamed H.; Selamoglu, Zeliha
    Background/Aims: Propolis is one of the most promising natural products, exhibiting not only therapeutic but also prophylactic actions. Propolis has several biological and pharmacological properties, including hepatoprotective activities. The present study aimed to investigate the underlying molecular mechanisms of propolis against CCl4-mediated liver fibrosis. Methods: Three groups of male BALB/c mice (n=15/group) were used: group 1 comprised control mice; groups 2 and 3 were injected with CCl4 for the induction of liver fibrosis. Group 3 was then orally supplemented with propolis (100 mg/kg body weight) for four weeks. Different techniques were used to monitor the antifibrotic effects of propolis, including histopathological investigations using H&E, Masson's trichrome and Sirius red staining; Western blotting; flow cytometry; and ELISA. Results: We found that the induction of liver fibrosis by CCl4 was associated with a significant increase in hepatic collagen and ?-smooth muscle actin (?-SMA) expression. Moreover, CCl4-treated mice also exhibited histopathological alterations in the liver architecture. Additionally, the liver of CCl4-treated mice exhibited a marked increase in proinflammatory signals, such as increased expression of HSP70 and increased levels of proinflammatory cytokines and ROS. Mechanistically, the liver of CCl4-treated mice exhibited a significant increase in the phosphorylation of AKT and mTOR; upregulation of the expression of BAX and cytochrome C; downregulation of the expression of Bcl2; a significant elevation in the levels of TGF-? followed by increased phosphorylation of SMAD2; and a marked increase in the expression of P53 and iNOS. Interestingly, oral supplementation of CCl4-treated mice with propolis significantly abolished hepatic collagen deposition, abrogated inflammatory signals and oxidative stress, restored CCl4-mediated alterations in the signaling cascades, and hence repaired the hepatic architecture nearly to the normal architecture observed in the control mice. Conclusion: Our findings revealed the therapeutic potential and the underlying mechanisms of propolis against liver fibrosis. © 2019 The Author(s).
  • Küçük Resim Yok
    Öğe
    Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders
    (MASHHAD UNIV MED SCIENCES, 2017) Badr, Gamal; Ramadan, Nancy K.; Sayed, Leila H.; Badr, Badr M.; Omar, Hossam M.; Selamoglu, Zeliha
    The balance between free radicals and antioxidants is an important factor for maintaining health and slowing disease progression. The use of antioxidants, particularly natural antioxidants, has become an important strategy for dealing with this cause of widespread diseases. Natural antioxidants have been used as therapeutic tools against many diseases because they are safe, effective, and inexpensive and are among the most commonly used adjuvants in the treatment of several diseases. Camel whey protein (CWP) is considered a strong natural antioxidant because it decreases oxidative stress, enhances immune system function, and increases glutathione levels. The structure of CWP is very similar to that of other types of whey protein from different types of milk. CWP contains many components, such as lactoferrin (LF), lactalbumin, lactoglobulins, lactoperoxidase, and lysozyme, and is rich in immunoglobulins. However, in contrast to other WPs, CWP lacks beta-lactoglobulin, the main cause of milk allergies in children. The components of CWP have many beneficial effects, including stimulation of both innate and adaptive immunity and anti-inflammatory, anticancer, antibacterial, and antiviral activities. Recently, it has been shown that CWP and its unique components can facilitate the treatment of impaired diabetic wound healing. However, the molecular mechanisms underlying the protective effects of CWP in human and other animal disorders are not fully understood. Therefore, the current review presents a concise summary of the scientific evidence of the beneficial effects of CWP to support its therapeutic use in disease treatment and nutritional intervention.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim