Yazar "Buyuksungur, Arda" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation of Phase Transformation and Fracture Pattern as a Result of Long-Term Chewing Simulation and Static Loading of Reduced-Diameter Zirconia Implants(Mdpi, 2024) Atalay Seckiner, Pelin; Gonuldas, Fehmi; Akat, Bora; Buyuksungur, Arda; Orhan, KaanWhile zirconia implants exhibit osseointegration comparable to that of titanium, concerns arise regarding low-temperature degradation and its potential impact on fracture strength. This study investigated the phase transformation and fracture characteristics of zirconia dental implants after aging through chewing simulation and subsequent static loading. The experimental setup involved 48 one-piece monobloc zirconia implants with diameters of 3.0 mm and 3.7 mm that had straight or angled abutments, with crown restorations, which were divided into six groups based on intraoral regions. The specimens underwent chewing simulation equal to five years of oral service, which was followed by static loading. Statistical analyses were performed for the data obtained from the tests. After dynamic and static loadings, the fractured samples were investigated by Raman spectroscopy to analyze the phase composition and micro-CT to evaluate fracture surfaces and volume changes. According to the results, narrow-diameter zirconia implants have low mechanical durability. The fracture levels, fracture patterns, total porosity, and implant fracture volume values varied according to the implant diameter and phase transformation grade. It was concluded that phase transformation initially guides the propagation of microcracks in zirconia implants, enhancing fracture toughness up to a specific threshold; however, beyond that point, it leads to destructive consequences.Öğe Local application of gingiva-derived mesenchymal stem cells on experimental periodontitis in rats(Wiley, 2024) Balaban, Yunus Emre; Akbaba, Sema; Bozkurt, Serife Buket; Buyuksungur, Arda; Akgun, E. Ece; Gonen, Zeynep Burcin; Salkin, HasanBackground: Stem cell-based approaches in regenerative periodontal therapy have been used in different experimental models. In this study, the effect of local application of gingival mesenchymal stem cells (GMSC) in fibroin/chitosan oligosaccharide lactate hydrogel (F/COS) on periodontal regeneration was evaluated using experimental periodontitis model in rats.Methods: Mesenchymal stem cells were isolated from the gingiva of rats and characterized. Viability tests and confocal imaging of GMSC in hydrogels were performed. Healthy control without periodontitis (Health; H; n=10), control with periodontitis but no application (Periodontitis; P; n=10), only hydrogel application (F/COS; n=10), and GMSC+F/COS (n=10) four groups were formed for in vivo studies. Experimental periodontitis was created with silk sutures around the maxillary second molars. GMSC labeled with green fluorescent protein (GFP) (250,000 cells/50 mu L) in F/COS were applied to the defect. Animals were sacrificed at 2nd and 8th weeks and maxillae of the animals were evaluated by micro-computed tomography (micro-CT) and histologically. The presence of GFP-labeled GMSC was confirmed at the end of 8 weeks.Results: Micro-CT analysis showed statistically significant new bone formation in the F/COS+GMSC treated group compared with the P group at the end of 8 weeks (p < 0.05). New bone formation was also observed in the F/COS group, but the statistical analysis revealed that this difference was not significant when compared with the P group (p > 0.05). Long junctional epithelium formation was less in the F/COS+GMSC group compared with the P group. Periodontal ligament and connective tissue were well-organized in F/COS+GMSC group.Conclusion: The results showed that local GMSC application in hydrogel contributed to the formation of new periodontal ligament and alveolar bone in rats with experimental periodontitis. Since gingiva is easly accessible tissue, it is promising for autologous cell-based treatments in clinical applications.