Yazar "Canli, Esin Gulnaz" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effects of in vivo exposures to nanoparticles (Al2O3, CuO, TiO2) on the activities of ATPases in the gill and muscle of freshwater mussel (Unio tigridis)(Tubitak Scientific & Technological Research Council Turkey, 2022) Canli, Esin Gulnaz; Canli, MustafaMussels are effective bioindicator organisms for aquatic environments. Therefore, they were often used to determine the effects of various xenobiotics in the aquatic systems. There is no study to our knowledge on the in vivo effects of nanoparticles (NPs) on the activities of ATPases in freshwater mussels (Unio tigridis). This work demonstrates the effects of Al2O3, CuO, and TiO2 NPs on Na-ATPase, Ca-ATPase, and Mg-ATPase activities in the gill and muscle of mussels following 14-day exposures to different concentrations of NPs (0, 1, 3, 9 mg/L). Mussels were fed with laboratory cultured algae (Chlorella vulgaris) during the exposures. There was no ouabain-sensitive ATPase activity in the tissues of U. tigridis. The activities of Na-ATPase and Ca-ATPase in the gill decreased significantly (p 0.05), while Mg-ATPase activity increased. However, the activities of all ATPases decreased significantly after NP exposures in the muscle. There were more significant alterations in the gill compared to the alterations in the muscle. The order of NP effects was determined as TiO2 CuO > Al2O3. There was no significant alteration in algae consumption between control and NP-exposed mussels. The present study reporting the first data on the effects of NPs in U. tigridis demonstrated the sensitivity of mussel physiology towards NP exposures, suggesting further studies to understand better the physiological response of mussels.Öğe Individual and Combined Effects of Salinity and Nanoparticles (Al2O3, TiO2) on the Activity of Antioxidant Enzymes in Freshwater Fish (Oreochromis niloticus)(Central Fisheries Research Inst, 2021) Canli, Esin GulnazSalinity increase in freshwaters affects the physiology and metal uptake in fish, though there is no enough evidence on the influence of salinity on metal-oxide nanoparticle (NPs) toxicity. Therefore, the effects of salinity and NPs (Al2O3, TiO2) were tested in acute (2 days and 10 mg NPs/L) and chronic (20 days and 1 mg NP/L) exposures at different salinities (0 and 10 ppt). Following the exposures, the activities of CAT (catalase), SOD (superoxide dismutase), GPX (glutathione peroxidase), GR (glutathione reductase) and GST (glutathione S-transferase) were determined in the liver of O. niloticus. Data showed that CAT and SOD activities did not change significantly (P>0.05) in acute exposures, though their activities significantly (P<0.05) decreased in chronic exposures at both salinities. Similarly, GPX and GR activities did not respond to acute NP exposures, but their activities decreased significantly in chronic exposures. However, GST showed the opposite response in acute and chronic exposures following NP and salinity exposures. Data showed that chronic exposures were more effective than acute exposures in regard to the response of the enzymes. Data also revealed that salinity did not have a predominant effect on the antioxidant enzymes, and also did not influence NPs toxicity.