Yazar "Cederwall, B." seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Evidence for enhanced neutron-proton correlations from the level structure of the N = Z+1 nucleus 8743Tc44(Amer Physical Soc, 2021) Liu, X.; Cederwall, B.; Qi, C.; Wyss, R. A.; Aktaş, O.; Ertoprak, A.; Zhang, W.The low-lying excited states in the neutron-deficient N = Z + 1 nucleus (87)(43)Tcc(44) have been studied via the fusion-evaporation reaction Fe-54(Ar-36, 2n1p)Tc-87 at the Grand Accelerateur National d'Ions Lourds (GANIL), France. The AGATA spectrometer was used in conjunction with the auxiliary NEDA, Neutron Wall, and DIAMANT detector arrays to measure coincident prompt gamma rays, neutrons, and charged particles emitted in the reaction. A level scheme of Tc-87 from the (9/2(g.s.)(+)) state to the (33/2(1)(+)) state was established based on six mutually coincident gamma-ray transitions. The constructed level structure exhibits a rotational behavior with a sharp backbending at (h) over bar omega approximate to 0.50 MeV. A decrease in alignment frequency and increase in alignment sharpness in the odd-mass isotonic chains around N = 44 is proposed as an effect of the enhanced isoscalar neutron-proton interactions in odd-mass nuclei when approaching the N = Z line.Öğe Evidence for spherical-oblate shape coexistence in 87Tc(Amer Physical Soc, 2022) Liu, X.; Cederwall, B.; Qi, C.; Wyss, R. A.; Aktas, O.; Ertoprak, A.; Zhang, W.Excited states in the neutron-deficient nucleus Tc-87 have been studied via the fusion-evaporation reaction 54Fe(36Ar, 2n1p) Tc-87 at 115 MeV beam energy. The AGATA gamma-ray spectrometer coupled to the DIAMANT, NEDA, and Neutron Wall detector arrays for light-particle detection was used to measure the prompt coincidence of gamma rays and light particles. Six transitions from the deexcitation of excited states belonging to a new band in Tc-87 were identified by comparing gamma-ray intensities in the spectra gated under different reaction channel selection conditions. The constructed level structure was compared with the shell model and total Routhian surface calculations. The results indicate that the new band structure in 87Tc is built on a spherical configuration, which is different from that assigned to the previously identified oblate yrast rotational band.Öğe gamma-ray spectroscopy of Ta-163(AMER PHYSICAL SOC, 2009) Sandzelius, M.; Cederwall, B.; Ganioglu, E.; Thomson, J.; Andgren, K.; Bianco, L.; Johnson, A.Excited states in Ta-163 have been identified for the first time using the Cd-106(Ni-60,3p) fusion evaporation reaction. gamma rays were detected using the JUROGAM gamma-ray spectrometer and recoil discrimination was achieved using the recoil ion transport unit (RITU) gas-filled separator in conjunction with the GREAT spectrometer situated at the focal plane of the RITU. The yrast states are assigned to a strongly coupled rotational band based on a pi h(11/2) configuration. This structure exhibits large signature splitting at low spins that disappears after the paired band crossing because of the alignment of a pair of i(13/2) neutrons. This effect is ascribed to triaxial shape changes induced by the core-polarizing properties of the deformation-aligned h(11/2) proton and the rotation-aligned i(13/2) neutrons. Two additional strongly coupled band structures have been established and are discussed in terms of octupole-vibrational and two-quasiparticle excitations built on the yrast structure. The experimental results are compared with predictions from cranked-shell-model and total-Routhian-surface calculations.Öğe Isomeric and ground-state properties of Pt-171(78), Os-167(76), and W-163(74)(AMER PHYSICAL SOC, 2010) Scholey, C.; Andgren, K.; Bianco, L.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Joss, D. T.Decay paths, half-lives, and excitation energies of the i(13/2) bandheads of the neutron-deficient nuclei Pt-171, Os-167, and W-163 have been established for the first time. Gamma-ray transitions, X-rays, and internal conversion electrons have been observed, allowing internal-conversion coefficients to be measured and B(M2) reduced transition probabilities to be extracted. These results elucidate the low-lying single-quasiparticle structures and give the energy level spacings between the nu f(7/2), nu h(9/2), and nu i(13/2) quasineutron states for all three nuclei. Moreover, ground-state spin assignments have been made for the first time, along with the measurement of the alpha-decay branching ratio for Pt-171. The decay paths of the i(13/2) bandheads were followed by favored alpha decays, indicating that all three nuclei have the same I-pi = 7/2(-) ground state.Öğe Isospin Properties of Nuclear Pair Correlations from the Level Structure of the Self-Conjugate Nucleus 88Ru(Amer Physical Soc, 2020) Cederwall, B.; Liu, X.; Aktas, O.; Ertoprak, A.; Zhang, W.; Qi, C.; Clement, E.The low-lying energy spectrum of the extremely neutron-deficient self-conjugate (N = Z) nuclide Ru-88(44)44 has been measured using the combination of the Advanced Gamma Tracking Array (AGATA) spectrometer, the NEDA and Neutron Wall neutron detector arrays, and the DIAMANT charged particle detector array. Excited states in Ru-88 were populated via the Fe-54(Ar-36, 2n gamma)Ru-88* fusion-evaporation reaction at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator complex. The observed gamma-ray cascade is assigned to Ru-88 using clean prompt gamma-gamma-2-neutron coincidences in anticoincidence with the detection of charged particles, confirming and extending the previously assigned sequence of low-lying excited states. It is consistent with a moderately deformed rotating system exhibiting a band crossing at a rotational frequency that is significantly higher than standard theoretical predictions with isovector pairing, as well as observations in neighboring N > Z nuclides. The direct observation of such a delayed rotational alignment in a deformed N = Z nucleus is in agreement with theoretical predictions related to the presence of strong isoscalar neutron-proton pair correlations.Öğe LIFETIME MEASUREMENTS WITH THE DOPPLER SHIFT ATTENUATION METHOD USING A THICK HOMOGENEOUS PRODUCTION TARGET - VERIFICATION OF THE METHOD(Jagiellonian Univ Press, 2017) Ertoprak, A.; Cederwall, B.; Jakobsson, U.; Nyako, B. M.; Nyberg, J.; Davies, P.; Doncel, M.Doppler Shift Attenuation Method (DSAM) analysis of excited-state lifetimes normally employs thin production targets mounted on a thick stopper foil (backing) serving to slow down and stop the recoiling nuclei of interest in a well-defined manner. Use of a thick, homogeneous production target leads to a more complex analysis as it results in a substantial decrease in the energy of the incident projectile which traverses the target with an associated change in the production cross section of the residues as a function of penetration depth. Here, a DSAM lifetime analysis using a thick homogeneous target has been verified using the Doppler broadened lineshapes of gamma rays following the decay of highly excited states in the semi-magic (N = 50) nucleus Ru-94. Lifetimes of excited states in the Ru-94 nucleus have been obtained using a modified version of the LINESHAPE package from the Doppler broadened lineshapes resulting from the emission of the gamma rays, while the residual nuclei were slowing down in the thick (6 mg/cm(2)) metallic Ni-58 target. The results have been validated by comparison with a previous measurement using a different (RDDS) technique.Öğe Lifetimes of core-excited states in semi-magic 95Rh(Springer, 2020) Ertoprak, A.; Qi, C.; Cederwall, B.; Doncel, M.; Jakobsson, U.; Nyako, B. M.; Jaworski, G.Lifetimes of negative-parity states have been determined in the neutron deficient semi-magic (N = 50) nucleus Rh-95. The fusion-evaporation reaction Ni-58(Ca-40, 3p) was used to populate high-spin states in Rh-95 at the Grand Accelerateur National d'Ions Lourds (GANIL) accelerator facility. The results were obtained using the Doppler Shift Attenuation Method (DSAM) based on the Doppler broadened line shapes produced during the slowing down process of the residual nuclei in a thick 6 mg/cm(2) metallic target. B(M1) and B(E2) reduced transition strengths are compared with predictions from large-scale shell-model calculations. state-of-the-art theory. Remarkably, the structural features up to moderate angular momentum of nuclei immediately below the N = Z = 50 shell closures can be described with high accuracy in a very simple way by shell-model calculations including only the g(9/2) and p(1/2) subshells. Of special interest is the neutron-proton pair coupling scheme which is expected to appear in the heaviest N=Z nuclei [1,2] and the seniority structure of the N = 50 isotones [3-7]. However, multiple core-excited states have been observed in the semi-magic nuclei of the Sn-100 region [8-10]. The theoretical study of those states is a challenging task, which requires a significantly larger model space for their interpretation. Transition probabilities between nuclear states provide important constraints for theoretical modelling of the structure of the nuclei of interest. Our previous lifetime study of the semimagic (N = 50) nucleus Ru-94 [ 11,12] provided information on the electromagnetic decay properties of neutron-core excited states. We now address lifetime measurements in its closest, more neutron deficient, isotone Rh-95 using the same DSAM technique. The experimental results have been interpreted within the framework of large-scale shell-model (LSSM) calculations.