Yazar "Demirkesen, A. C." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Coastal flood risk analysis using landsat-7 ETM+ imagery and SRTM DEM: A case study of Izmir, turkey(SPRINGER, 2007) Demirkesen, A. C.; Evrendilek, F.; Berberoglu, S.; Kilic, S.The Intergovernmental Panel on Climate Change (IPCC) reports an acceleration of the global mean sea-level rise (MSLR) in the twentieth century in response to global climate change. If this acceleration remains constant, then some coastal areas are most likely to be inundated by the year 2100. The ability to identify the differential vulnerability of coastlines to future inundation hazards as result of global climate change is necessary for timely actions to be taken. Yildiz et al. (Journal of Mapping, 17, 1 75, 2003) reported that the local MSLR in the city of Izmir rose at a rate of 6.8 +/- 0.9 mm year(-1) between 1984 and 2002. In this study, the spatial distribution of the coastal inundation hazards of Izmir region was determined using not only land-use and land-cover (LULC) types derived from the maximum likelihood classification of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) multi-spectral image set but also the classification of the digital elevation model (DEM) acquired by the shuttle radar topography mission (SRTM). Coastal areas with elevations of 2 and 5 m above mean sea-level vulnerable to inundation were found to cover 2.1 and 3.7% of the study region (6,107 km(2)), respectively. Our findings revealed that Menemen plain along Gediz river, and the settlements of Karsiyaka, Alacati, Aliaga, Candarli and Selcuk are at high risk in order of decreasing vulnerability to permanent and episodic inundation by 2100 under the high MSLR scenarios of 20 to 50 mm year(-1).Öğe Digital terrain analysis using Landsat-7 ETM+ imagery and SRTM DEM: a case study of Nevsehir province (Cappadocia), Turkey(TAYLOR & FRANCIS LTD, 2008) Demirkesen, A. C.A three-dimensional (3D) model of land-use/land-cover (LULC) and a digital terrain model of Nevsehir province (Cappadocia), Turkey, were generated and analysed using a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) multispectral image set and a Shuttle Radar Topographic Mission (SRTM) digital elevation model (DEM). Stream drainage patterns, lineaments and structural-geological features (landforms) were extracted and analysed. In the process of analysing and interpreting the multispectral images of geological features, criteria such as colour and colour tones, topography and stream drainage patterns were used to acquire information about the geological structures of the land, including as geomorphological, topographic and tectonic structures. Landsat-7 ETM+ multispectral imagery and an SRTM DEM of the study region were used experimentally for classification and analysis of a digital terrain model. Using the multispectral image data, the LULC types were classified as: settlement (1.2%); agricultural land (70.1%); forest (scrubland, orchard and grassland) (2.9%); bare ground (25.5%); and water bodies (lakes and rivers) (0.3%) of the study area (5434km(2)). The results of the DEM classification in the study area were: river flood plain (11.3%); plateau (52.3%); high plateau (28.4%); mountain (7.6%); and high mountain (0.3%). Lineament analysis revealed that the central Kizilirmak River divides the region into two nearly equal parts: the Kirsehir Plateau in the north and the Nevsehir Plateau in the south. In terms of the danger of catastrophe, the settlements of Kozakli, Hacibektas and Acigol were found to be at less risk of earthquake and/or flooding than those of Avanos, Gulsehir, Urgup, Nevsehir, Gumuskent and Derinkuyu, which are located on river flood plains and/or the main stream drainage channels, particularly stream beds, where the lineaments are deep valleys or fracture or fault-line indicators.Öğe Quantifying geological structures of the Nigde province in central Anatolia, Turkey using SRTM DEM data(SPRINGER, 2009) Demirkesen, A. C.A digital terrain model and a 3D fly-through model of the Nigde province in central Anatolia, Turkey were generated and quantitatively analyzed employing the shuttle radar topographic mission (SRTM) digital elevation model (DEM). Besides, stream drainage patterns, lineaments and structural-geological features were extracted and analyzed. In the process of analyzing and interpreting the DEM for landforms, criteria such as color and color tones (attributes of heights), topography (shaded DEM and 3D fly-through model) and stream drainage patterns were employed to acquire geo-information about the land, such as hydrologic, geomorphologic, topographic and tectonic structures. In this study, the SRTM DEM data of the study region were experimentally used for both DEM classification and quantitative analysis of the digital terrain model. The results of the DEM classification are: (1) low plain including the plains of Bor and Altunhisar (20.7%); (2) high plain including the Misli (Konakli) plain (28.8%); (3) plateau plain including the Melendiz (Ciftlik) plateau plain (1.0%); (4) mountain including the Nigde massif (33.3%); and (5) high mountain (16.2%). High mountain areas include a caldera complex of Mt Melendiz, Mt Hasan and Mt Pozanti apart from the Ala mountains called Aladaglar and the Bolkar mountains called Bolkarlar in the study region (7,312 km(2)). Analysis of both the stream drainage patterns and the lineaments revealed that the Nigde province has a valley zone called Karasu valley zone (KVZ) or Nigde valley zone (NVZ), where settlements and agricultural plains, particularly the Bor plain in addition to settlements of the Bor town and the central city of Nigde have the most flooding risk when a heavy raining occurs. The study revealed that the NVZ diagonally divides the study region roughly into two equal parts, heading from northeast to southwest. According to the map created in this study, the right side of the NVZ has more mountainous area, where the Aladaglar is a wildlife national park consisting of many species of fauna and flora whereas the left side of the NVZ has more agricultural plain, with exception of a caldera complex of Mt Melendiz and volcanic Mt Hasan. The south of the study region includes the Bolkarlar. In addition, the Ecemis fault zone (EFZ) lying along the Ecemis rivulet, running from north to south at the west side of the Aladaglar, forms the most important and sensitive location in the region in terms of the tectonics.