Yazar "Erturk, S." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Competing quasiparticle configurations in W-163(AMER PHYSICAL SOC, 2010) Thomson, J.; Joss, D. T.; Paul, E. S.; Scholey, C.; Simpson, J.; Erturk, S.; Hadinia, B.Excited states in the neutron-deficient nuclide W-163 were investigated using the Cd-106(Ni-60, 2pn)W-163 reaction at a beam energy of 270 MeV. The level scheme for W-163 was extended significantly with the observation of five new band structures. The yrast band based on a 13/2(+) isomeric state is extended up to (57/2(+)). Two band structures were established on the 7/2(-) ground state. Quasiparticle configuration assignments for the new band structures were made on the basis of cranked Woods-Saxon shell-model calculations. The results reported in this article suggest that the negative-parity nu(f(7/2), h(9/2)) orbitals are responsible for the first rotational alignment in the yrast band.Öğe Energy Response of LaBr3(IOP PUBLISHING LTD, 2012) Erturk, S.; Maj, A.; Ciemala, M.; Stezowski, O.; Courtin, S.; Strachan, J.; Kumar, S.; Freeman, S; Andreyev, A; Bruce, A; Deacon, A; Jenkins, D; Joss, D; MacGregor, D; Regan, P; Simpson, J; Tungate, G; Wadsworth, R; Watts, DIn recent years, important developments in scintillator technology have been made in the Lanthanum Halogen LaBr3 (Ce) crystal, which has high-energy separation, very good timing-properties and a stopping-power that can be used as a detector at room temperature. The international PARIS project will be created as a prototype of this detector system, which will be used in SPIRAL2 as a stand alone or in collaboration with the EXOGAM or AGATA detector array. A fusion evaporation reaction is used to produce exotic nuclei and is then transferred at a very high angular momentum to compound nuclei. Due to the accompanying high rotation, the exotic shape starts changing into vibrational and rotational collective phenomena which hitherto have together become difficult to detect and fully understand. In order to perform this type of research, in addition to conventional known gamma-ray detectors, high-efficiency gamma-ray detectors that can effectively identify gamma rays are also required as calorimeters. LaBr3 is planned to use such means. Results of ongoing analysis for energy and the time response of LaBr3 will be presented.