Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gençtürk, Tuğrul Hakan" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Comparative Study on Subdural Brain Hemorrhage Segmentation
    (Springer Science and Business Media Deutschland GmbH, 2023) Gençtürk, Tuğrul Hakan; Kaya, İsmail; Gülağız, Fidan Kaya
    Brain hemorrhages are one of the most dangerous disease groups. If not detected early, it can lead to death or severe disability. The most common method used to detect bleeding is the evaluation of computed tomography (CT) images belonging to the bleeding area by specialist physicians. Considering the difficulty of access to neurosurgery specialists and the lack of expertise of other doctors in emergency intervention on the subject, there is a need for decision support mechanisms to assist physicians in the diagnosis and treatment process. Artificial intelligence-based systems to be used for this purpose can accelerate the diagnosis and treatment process while reducing the burden on physicians. In this study, the suitability of Mask Region-Based Convolutional Neural Network (Mask R-CNN), Cascade Region-Based Convolutional Neural Network (Cascade R-CNN), Mask Scoring Region-Based Convolutional Neural Network (MS R-CNN), Hybrid Task Cascade (HTC), You Only Look At Coefficients (YOLACT), Instances as Queries (QueryInst), and Sample Consistency Network (SCNet) methods, investigated for the problem of detection and segmentation of subdural brain hemorrhages. The performance of the methods was determined over the images in the CQ500 dataset. This is one of the few studies that perform segmentation of subdural cerebral hemorrhages using CT images from an open dataset. The results were evaluated according to Intersection Over Union (IoU) and Mean Average Precision (mAP) metrics. Experimental results showed that two methods could detect and segment subdural hemorrhages more accurately than the others. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim