Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kamasak, Mustafa" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Comparison of mandibular morphometric parameters in digital panoramic radiography in gender determination using machine learning
    (Springer, 2024) Pertek, Hanife; Kamasak, Mustafa; Kotan, Soner; Hatipoglu, Fatma Pertek; Hatipoglu, Omer; Kose, Taha Emre
    ObjectiveThis study aimed to evaluate the usability of morphometric features obtained from mandibular panoramic radiographs in gender determination using machine learning algorithms.Materials and methodsHigh-resolution radiographs of 200 patients aged 20-77 (41.0 +/- 12.7) were included in the study. Twelve different morphometric measurements were extracted from each digital panoramic radiography included in the study. These measurements were used as features in the machine learning phase in which six different machine learning algorithms were used (k-nearest neighbor, decision trees, support vector machines, naive Bayes, linear discrimination analysis, and neural networks). To evaluate the reliability, we have performed tenfold cross-validation and we repeated this 10 times for every classification process. This process enhances the reliability of the results for other datasets.ResultsWhen all 12 features are used together, the accuracy rate is found to be 82.6 +/- 0.5%. The classification accuracies are also compared using each feature alone. Three features that give the highest accuracy are coronoid height (80.9 +/- 0.9%), condyle height (78.2 +/- 0.5%), and ramus height (77.2 +/- 0.4%), respectively. When compared to the classification algorithms, the highest accuracy was obtained with the naive Bayes algorithm with a rate of 84.0 +/- 0.4%.ConclusionMachine learning techniques can accurately determine gender by analyzing mandibular morphometric structures from digital panoramic radiographs. The most precise results are achieved by evaluating the structures in combination, using attributes obtained from applying the MRMR algorithm to all features.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim