Yazar "Kaya, Salih Tunc" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Herbal medicine in diabetes mellitus with cardiovascular diseases(Springer International Publishing, 2019) Kaya, Salih Tunc; Guven, Celal; Taskin, Eylem[No abstract available]Öğe Silencing HMGB1 expression inhibits adriamycin's heart toxicity via TLR4 dependent manner through MAPK signal transduction(Imprimatur Publications, 2020) Taskin, Eylem; Guven, Celal; Kaya, Salih Tunc; Sariman, Melda; Emrence, Zeliha; Ekmekci, Sema Sirma; Abaci, NeslihanPurpose: Adriamycin (APR) is a commonly used anti-cancer drug. ADR has toxic effects on cardiomyocytes and leads to heart failure. However, the underlying mechanism(s) by which ADR causes heart failure is still not clarified exactly. The aim of present study is to investigate whether ADR-induced heart failure is mediated via HMGB1/TLR4 to initiate the apoptosis through MAPK/AMPK pathways. Methods: H9c2 cell line was used to create four groups as a control, HMGB1 inhibition, ADR, ADR+HMGB1 inhibition. Silencing HMGB1 was performed with specific small interfering RNA. ADR was used at 2 mu M concentration for 36 and 48 hours. Protein and genes expressions, apoptosis was measured. Results: Although ADR decreased AMPK, pAMPK, ERK1/2, pERK1/2, p38, JNK protein expression, ADR+HMGB1 inhibition led to change those protein expressions. The effect of silencing of HMGB1 prevented apoptosis induced by ADR in the cells. HMGB1 caused changes a kind of posttranscriptional modification on the TLR4 receptor. This posttranscriptional modification of TLR4 receptor led to decreased AMPK protein level, but phosphorylated-AMPK. This alternation of AMPK protein caused enhancing of JNK protein, resulting from the decline of p38 and ERK protein levels. Eventually, JNK triggered apoptosis by a caspase-dependent pathway. The number of TUNEL positive and active caspase 8 cells at ADR was high, although HMGB1 silencing could decrease the cell numbers. Conclusions: Inhibition of HMGB1 might prevent the lose of the cardiac cell by inhibition of apoptotic pathway, therefore HMGB1 plays an essential role as amplifying on ADR toxicity on the heart by TLR4.Öğe The Identification of Intracellular Signalling Pathway Through DHMGB1/TLR2 Axis on Myocardial Ischemia/Reperfusion Injury-Induced Apoptosis(Wiley, 2022) Guven, Eylem Taskin; Guven, Celal; Kaya, Salih Tunc; Keles, Ayse Ikinci; Destegul, Dilek; Pelit, Aykut; Gunay, Ismail[Abstract Not Available]Öğe The role of toll-like receptors in the protective effect of melatonin against doxorubicin-induced pancreatic beta cell toxicity(Pergamon-Elsevier Science Ltd, 2019) Taskin, Eylem; Guven, Celal; Kaya, Salih Tunc; Sahin, Leyla; Kocahan, Sayad; Degirmencioglu, Arife Zuhal; Gur, Fatih MehmetAims: Doxorubicin, an anticancer drug, has a toxic effect on many tissues such as heart, pancreas, liver, kidney, and testis. The aim of current study is to investigate whether melatonin would be protective in doxorubicin-induced beta (beta) cell toxicity via HMGB1/TLR2/TLR4/MAPK/NF-kappa B signaling pathway. Main methods: Human pancreatic beta cell (1.1B4) was used in the present study. Four experimental groups were created as control, melatonin (10 mu M), doxorubicin (2 mu M) and the combination of melatonin with doxorubicin. Following 24-h treatment, Mitogen-activated protein kinase (MAPKs), Toll like receptors (TLRs) including TLR2 and TLR4, pro-and anti-apoptotic protein expression levels were determined by western blotting. Total antioxidant (TAS), oxidant status (TOS) and oxidative stress index (OSI) of the cells as well as superoxide dismutase (SOD) levels were determined. Active caspase-8 activity was measured and TUNEL staining was performed to study apoptotic pathways. Mitochondrial membrane potential (MMP), some protein expressions and F-actin distribution were analyzed. Key findings: Doxorubicin caused to depolarize MMP, resulting in enhancing apoptosis by activation of caspase-8 via MAPKs/NF-kappa B pathway via elevation of TOS and decreasing TAS. Also, doxorubicin destroyed F-actin distribution and elevated TLR2 and some apoptotic proteins, including Bax. However, co-treatment of melatonin with doxorubicin could reverse depolarization of MMP and inhibition of apoptosis through MAPK/NF-kappa B signaling by decreasing TOS and increasing TAS. The co-treatment reversed the alternations of TLR2, TLR4, MAPKs and apoptotic protein expressions induced by doxorubicin. Significance: Melatonin could be a good candidate against pancreatic beta cell toxicity-induced by doxorubicin through TLR2/TLR4/MAPK/NF-kappa B pathways.