Yazar "Kaya-Altop, Emine" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigating glyphosate resistance in Amaranthus palmeri biotypes from Turkey(Springer, 2021) Mennan, Husrev; Kaya-Altop, Emine; Belvaux, Xavier; Brants, Ivo; Zandstra, Bernard H.; Jabran, Khawar; Uysal, Meral SahinAmaranthus palmeri is a troublesome weed which is growing in importance worldwide. It causes serious competition in many crops. A. palmeri was introduced into Turkey 4-5 years ago and appears to adapt to different environmental conditions. Monoculture cropping systems and repeated use of the same herbicides have led to development of herbicide resistance in A. palmeri to several active ingredients including glyphosate, in USA and in South America. This study was conducted to investigate the evolution of glyphosate resistance in A. palmeri in Turkey. Seeds of 21 A. palmeri populations were collected in Turkish citrus fields where control problems with glyphosate were reported. A potentially glyphosate susceptible A. palmeri population was collected from a maize field (GS1 biotype). Seeds of putatively resistant and potentially susceptible (GS) biotypes were germinated and transplanted into large pots, and then allowed to grow in separate greenhouse chambers to obtain F2 generations. After carrying out a preliminary test experiment to exclude the most susceptible populations, a dose-response experiment was conducted in which glyphosate was applied at the 3-4 true leaf stage at 0, 332.5, 665, 1330, 2660, 5320, 10,640 and 21,280 g a.i. ha(-1). Plants were harvested 21 days after treatment and dry weight was determined. Glyphosate applied at the recommended rate (1330 g a.i ha(-1)) controlled GS A. palmeri biotypes by more than 95% while controlling the GR biotypes at about 45%. Among those biotypes, GR1 and GR2 biotypes were confirmed to have an incipient resistance to glyphosate. The effect of glyphosate on shikimic acid accumulation was determined. Results showed that the GS2 biotype accumulated 3.1 and 1.56 times more shikimic acid than GR2 and GR1 biotypes which demonstrates that there is a lower accumulation of shikimic acid in the alleged resistant biotypes than in GS1. These findings demonstrate some increased tolerance of A. palmeri biotypes to glyphosate, which reinforces the need to implement integrated weed management to control this invasive plant in Turkey.Öğe Multiple resistance to EPSPS and ALS inhibitors in Palmer amaranth (Amaranthus palmeri) identified in Turkey(Wiley, 2024) Kaya-Altop, Emine; Jabran, Khawar; Pala, Firat; Mennan, HusrevAmaranthus palmeri was first reported in Turkey in 2016, and an immediate heavy infestation of the weed was found in fruit orchards and summer crops such as maize, cotton, and sunflower. There have been farmers' complaints about the ineffective control of Palmer amaranth through the use of glyphosate and some sulfonylureas herbicides. Hence, this study aimed to determine the possible herbicide resistance evolution in Palmer amaranth against glyphosate and acetolactate synthase (ALS) herbicides. Seeds of 21 Palmer amaranth populations were collected from five provinces of Turkey where control problems with glyphosate and ALS inhibitors were reported in maize fields. Seeds of certain biotypes categorized as resistant or susceptible were grown to obtain the F-2 generation. A single-dose experiment determined the possible resistance to ALS inhibitors and glyphosate among the 21 populations. Of this, 18 populations were included in the subsequent dose-response experiments due to evident survival. Based on ED50 values from the dose-response experiment, SNU-04 and ADN-21 biotypes had the highest resistance index for glyphosate which was more than 7. The biotypes ADN-21, OSM-15, and DIR-09 recorded the highest ED50 value with a resistance index of 9.21-10.35 after nicosulfuron application. Whereas, the biotypes SNU-04, OSM-15, and ADN-21 were with the highest ED50 value and resistance index of 6.41-7.44, after the application of foramsulfuron + iodosulfuron methyl-sodium. The increase in genomic 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) copy number has been observed in suspected cases that have been accepted as the molecular basis for the development of resistance against glyphosate. The sequence alignment results for the ALS gene contained Ala122Val and Pro197Arg mutations related to target-site resistance against ALS herbicides.