Yazar "Metin, Mert" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Aluminum Toxicity: A Case Study on Tobacco (Nicotiana tabacum L.)(Tech Science Press, 2023) Ozturk, Munir; Metin, Mert; Altay, Volkan; Kawano, Tomonori; Gul, Alvina; Unal, Bengu Turkyilmaz; Unal, DilekAluminum is an abundant metal in the earth's crust that turns out to be toxic in acidic environments. Many plants are affected by the presence of aluminum at the whole plant level, at the organ level, and at the cellular level. Tobacco as a cash crop (Nicotiana tabacum L.) is a widely cultivated plant worldwide and is also a good model organism for research. Although there are many articles on Al-phytotoxicity in the literature, reviews on a single species that are economically and scientifically important are limited. In this article, we not only provide the biology associated with tobacco Al-toxicity, but also some essential information regarding the effects of this metal on other plant species (even animals). This review provides information on aluminum localization and uptake process by different staining techniques, as well as the effects of its toxicity at different compartment levels and the physiological consequences derived from them. In addition, molecular studies in recent years have reported specific responses to Al toxicity, such as overexpression of various protective proteins. Besides, this review discusses data on various organelle-based responses, cell death, and other mechanisms, data on tobacco plants and other kingdoms relevant to these studies.Öğe Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling(Springernature, 2022) Ozturk, Munir; Metin, Mert; Altay, Volkan; Bhat, Rouf Ahmad; Ejaz, Mahnoor; Gul, Alvina; Unal, Bengu TurkyilmazArsenic is a well-known element because of its toxicity. Humans as well as plants and animals are negatively affected by its exposure. Some countries suffer from high levels of arsenic in their tap water and soils, which is considered a primary arsenic-linked risk factor for living beings. Humans generally get exposed to arsenic by contaminated drinking waters, resulting in many health problems, ranging from cancer to skin diseases. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. This issue emphasizes the importance of speciation of the metalloid elements in terms of impacts on health. When species get exposed to arsenic, it affects the cells altering their involvement. It can lead to abnormalities in inflammatory mechanisms and the immune system which contribute to the negative impacts generated on the body. The poisoning originating from arsenic gives rise to various biological signs on the body which can be useful for the diagnosis. It is important to find true biomarkers for the detection of arsenic poisoning. In view of its application in medicine and biology, studies on understanding the biological activity of arsenic have increased. In this review, we aim at summarizing the current state of knowledge of arsenic and the mechanism behind its toxicity including genotoxicity, oxidative insults, epigenomic changes, and alterations in cellular signaling.Öğe Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae(Springernature, 2021) Ozturk, Munir; Metin, Mert; Altay, Volkan; De Filippis, Luigi; Unal, Bengu Turkyilmaz; Khursheed, Anum; Gul, AlvinaCadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, mitogen-activated protein kinase, high osmolarity glycerol, and cell wall integrity pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.Öğe Role of Rare Earth Elements in Plants(Springer, 2023) Ozturk, Munir; Metin, Mert; Altay, Volkan; Prasad, Majeti Narasimha Vara; Gul, Alvina; Bhat, Rouf Ahmad; Darvash, Moonisa AslamRare earth elements (generally abbreviated as REEs) are the name used to define 17 metals with special physicochemical features. In general, REEs are interest of chemists mainly because of their peculiar chemical abilities. However, this situation started to change, and REEs, recently, turn out to be a hotspot also for environmental biologist, plant biologist, and molecular biologists. Despite that there are diverse studies regarding biology of these elements (also defined as metals), biologist still have limited knowledge about the mechanisms of REE action in living (particular in reducing their toxic effects at high doses) and about the areas in which these metals can be used as biotechnological tools. REEs have a peculiarity that they can bind to other molecules to enhance several physiological activities like growth and development in plants and photosynthesis, and they are able to behave as synergistic agents for the intake of several nutrients. The supply of these elements in several species can be, as well, an important source of synthesis of natural compounds. The exogenous application of REEs in plants has been demonstrated to antagonize damages of salinity and metal stresses. The present review aims to put forward a comprehensive account of the latest findings related to the effects of REEs' on different aspects of plant growth and development. This compilation mainly targets scientists who afford to discover action mechanisms of REEs and researchers focussing on the amelioration of adverse consequences generated by REEs.