Yazar "Ozcan, Sancar Fatih" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An insight into cotton genetic engineering (Gossypium hirsutum L.): current endeavors and prospects(SPRINGER HEIDELBERG, 2015) Bakhsh, Allah; Anayol, Emine; Ozcan, Sancar Fatih; Hussain, Tahira; Aasim, Muhammad; Khawar, Khalid Mahmood; Ozcan, SebahattinCotton (Gossypium hirsutum L.) is the most significant cash crop and backbone of global textile industry. The importance of cotton can hardly be over emphasized in the economy of cotton-growing countries as cotton and cotton products contribute significantly to the foreign exchange earnings. Cotton breeders have continuously sought to improve cotton's quality through conventional breeding in the past centuries; however, due to limited availability of germplasm with resistant to particular insects, pests and diseases, further advancements in cotton breeding have been challenging. The progress in transformation systems in cotton paved the way for the genetic improvement by enabling the researchers to transfer specific genes among the species and to incorporate them in cotton genome. With the development of first genetically engineered cotton plant in 1987, several characteristics such as biotic (insects, viruses, bacteria and fungi) resistance, abiotic (drought, chilling, heat, salt), herbicide tolerance, manipulation of oil and fiber traits have been reported to date. Genetic engineering has emerged as a necessary tool in cotton breeding programs, strengthening classical strategies to improve yield and yield contributing factors. The current review highlights the advances and endeavors in cotton genetic engineering achieved by researchers worldwide utilizing modern biotechnological approaches. Future prospects of the transgenic cotton are also discussed.Öğe Inducing osmotic stress leads to better genetic transformation efficiency in cotton (Gossypium hirsutum L.)(TUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEY, 2016) Barpete, Surendra; Bakhsh, Allah; Anayol, Emine; Ozcan, Sancar Fatih; Oguz, Muhammet Cagri; Karakoc, Omer Cem; Ozcan, SebahattinThe present study investigated the effect of different salts on cotton shoot regeneration and transformation efficiency. Two-day-old germinating embryos of a local cotton cultivar (SG-125) were pretreated with 50 mM each of NaCl, CaCl2, and KCl for 60 min. The embryo explants were transformed by cocultivation with Agrobacterium tumefaciens strain LBA 4404 harboring a binary plasmid pTF101.1 that carried the insecticidal gene (cry1Ac) under control of wound-inducible promoter (AoPR1) and bilanafos acetyl reductase (bar) gene for plant selection. The salt-pretreated embryos showed maximum response on regeneration MS medium containing 0.50 mg/L 6-benzylaminopurine (BAP) and 0.10 mg/L indole-3-butyric acid (IBA), also supplemented with 5 mg/L bialaphos for in vitro screening of the transformed plantlets. The primary transformants were further screened by molecular techniques for integration and expression of the introduced gene. Maximum transformation efficiency (1.10%) was noted on KCl-treated explants compared to nontreated (control) explants. In conclusion, pretreatment of explants with 50 mM KCl for 60 min induced positive effects and triggered shoot regeneration in primary cotton transformants.Öğe Targeted expression of insecticidal hybrid SN19 gene in potato leads to enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata Say) and tomato leafminer (Tuta absoluta Meyrick)(Springer, 2017) Ahmed, Hussein Abdullah Ahmed; Onarici, Selma; Bakhsh, Allah; Akdogan, Guray; Karakoc, Omer Cem; Ozcan, Sancar Fatih; Aydin, GulsumThe expression of insecticidal genes must be induced at appropriate time and in sufficient amount to confer protection against targeted pests. However, the increased scientific reports of resistance development in insect pest against insecticidal delta-endotoxins, produced by Bacillus thuringiensis, provide impetus for the development of alternative insect management strategies. The present study was conducted to investigate the importance of targeted expression of a hybrid insecticidal gene (SN19) in potatoes. For this purpose, two plant expression vectors were constructed by cloning hybrid SN19 gene (cry1Ba-domain I-III and cry1Ia-domain II) under the control of a wound-inducible promoter isolated from Asparagus officinalis (AoPR1) and CaMV 35S promoter, and were transferred to Agrobacterium tumefaciens strain EHA 105. Four potato genotypes (Marabel, Innovator, Tokat 10/1 and Tokat 6/24) were transformed with EHA 105 strain harboring pTF101.1 35S-SN19 and pTF101.1 AoPR1-SN19 constructs. Phosphinothricin (PPT) was used at concentration of 1 mg/l for selection of primary transformants. PCR results showed the presence of both introduced SN19 and bar genes in 43 plants out of total 154 putative transgenics. Expression of SN19 protein in primary transformants was confirmed by Western blot assays. The mechanical wounding of transgenic plants exhibited more accumulated levels of SN19 proteins during post wounding period. Leaf biotoxicity assays with Colorado potato beetle (Coleoptera) and tomato leafminer (Lepidoptera) exhibited 100% mortality of the pests in primary transformants. Based on our mortality results with both constructs, we concluded that the potato transgenic lines exhibited targeted expression of insecticidal gene under the control of AoPR1 promoter upon insect wounding with eliminated toxicity of Cry protein and hence can be further used effectively in potato breeding programme.