Yazar "Ozmen, Ummuhan Ozdemir" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biological evaluation of Schiff bases containing dopamine as antibacterial/antifungal and potential Anti COVID-19 agents: Design, synthesis, characterization, molecular docking studies, and ADME properties(Elsevier, 2023) Unlu, Ayse; Ozmen, Ummuhan Ozdemir; Alyar, Saliha; Ozturk, Ali; Alyar, Hamit; Gunduzalp, Ayla BalabanIn this study, Schiff bases containing dopamine were synthesized and their antimicrobial activities were investigated in vitro. What makes this study unique is the use of dopamine as a starting compound, which has not been previously explored for the synthesis of Schiff bases with acetophenone substituents. These newly synthesized compounds exhibit important pharmacological properties, and their structures have been thoroughly characterized using elemental analysis, 1H NMR, 13C NMR, and FT-IR methods. In the next phase of the study, we evaluated the antimicrobial activities of these dopamine Schiff bases against seven different bacterial and fungal isolates. Remarkably, one compound, 5NO2-afdop, demonstrated exceptionally high antibacterial activity (MIC: 0.078 & mu;g/ml) against Gram-positive bacteria, namely Staphylococcus aureus and Staphylococcus epidermis. Its activity was even superior to that of the reference drugs sulfisoxazole and sulfamethoxazole (MIC: 0.312 & mu;g/ml). This finding highlights the potential of the synthesized compound as a promising antimicrobial agent. Moreover, in-silico studies, the 5NO2-afdop compound shows comparable activity against the major protease of SARS-CoV2, the virus responsible for the COVID-19 pandemic. To assess the drug-likeness of all synthesized compounds, we employed the five Lipinski rules and conducted ADME predictions. These analyses provided valuable insights into the compounds' pharmacological profiles, suggesting their potential as drug candidates.. Additionally, molecular docking studies shed light on the interactions between the synthesized compounds and their target proteins. Notably, 5NO2-afdop exhibited the strongest antibacterial activity against the S. aureus protein (PDB ID: 4FGD) and displayed promising antiviral activity against the SARS-CoV-2 major protease (PDB ID: 5R80). These docking results further support the potential of 5NO2-afdop as a dual-action compound with antibacterial and antiviral properties.Öğe In vitro antifungal and antibiofilm activities of novel sulfonyl hydrazone derivatives against Candida spp.(Masson Editeur, 2023) Aydin, Merve; Ozturk, Ali; Duran, Tugce; Ozmen, Ummuhan Ozdemir; Sumlu, Esra; Ayan, Esra Bilen; Korucu, Emine NedimeBackground: The aim of this study was to investigate the antifungal and antibiofilm activity of the new sulfo-nyl hydrazones compound derived from sulphonamides.Methods: In this study, new sulfonyl hydrazone series were synthesized via a green chemistry method. The structures of the synthesized compounds were characterized by elemental analyses and spectroscopic meth-ods. The antifungal activities of the Anaf compounds against Candida strains under planktonic conditions were tested. The biofilm-forming ability of Candida strains was determined and the inhibitory effects of Anaf compounds on Candida biofilms compared with fluconazole were measured by MTT assay. Expression analy-sis of biofilm-related genes was investigated with qRT-PCR. The statistical analysis was performed using a one-way ANOVA test.Candida: strains was determined and the inhibitory effects of Anaf compounds on Candida biofilms compared with fluconazole were measured by MTT assay. Expression analysis of biofilm-related genes was investigated with qRT-PCR. The statistical analysis was performed using a one-way ANOVA test. Results: A total of 16 (45.7%) out of 35 Candida isolates were determined as strong biofilm producers in this study. C. albicans was the most biofilm producer, followed by C. krusei and C. lusitaniae. The Anaf compounds had a broad spectrum of activity with MIC values ranging from 4 mg/ml to 64 mg/ml. Our data indicated that the Anaf compound had a significant effect on inhibiting biofilm formation in both fluconazole-susceptible and-resistant strains. The expression levels of hypha-specific genes als3, hwp1, ece1 and sap5 were downre-gulated by Anaf compounds.Conclusions: Our study revealed that the Anaf compounds had antifungal activity and inhibited fungal bio-films, which may be related to the suppression of C. albicans adherence and hyphal formation. These results suggest that Anaf compounds may have therapeutic potential for the treatment and prevention of biofilm-associated Candida infections.(c) 2022 SFMM. Published by Elsevier Masson SAS. All rights reserved.