Yazar "Pamuk, Ibrahim" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A novel two-part interconnector for solid oxide fuel cells(WILEY-BLACKWELL, 2014) Bakal, Ahmet; Aydin, Fatma; Mat, Mahmut D.; Ibrahimoglu, Beycan; Pamuk, IbrahimA two-part interconnector is developed for solid oxide fuel cell stacks to reduce cost and to improve sealing. The novel interconnector involves a metallic core for current collection and gas distribution and a ceramic support to house the metallic core and to separate two short stacks. The new interconnector reduces usage of expensive metallic alloys and substantially reduce mismatch between stack components due to higher expansion coefficient of metals. The new interconnectors also improve sealing with glass-ceramics eliminating chromium evaporation which is a major reason for sealing failure in fully metallic interconnectors. A proof of concept short stack is manufactured and tested in this study. A comparable performance with a convectional interconnector is obtained with new interconnector, while substantially improving the sealing quality. Copyright (c) 2014 John Wiley & Sons, Ltd.Öğe Effect of Nano Ion Conductor Infiltration on the Performance of Anode Supported Solid Oxide Fuel Cells(ELECTROCHEMICAL SOC INC, 2009) Timurkutluk, Cigdem; Timurkutluk, Bora; Mat, Mahmut D.; Kaplan, Yuksel; Ibrahimoglu, Beycan; Pamuk, Ibrahim; Singhal, SC; Yokokawa, HA high performance anode supported solid oxide fuel cell (SOFC) is developed by low-cost tape casting, co-sintering and nano-ion conductor infiltration techniques. A mixture of gadolinium and cerium nitrate solution is infiltrated into both anode and cathode layers and fired at a temperature that gadolinium nitrate and cerium nitrate undergoes a solid state reaction and forms nano ion conductor phase in both electrodes. The effect of molar concentrations and firing temperature of nano ion conductor phase on the cell performance are investigated. The measurements show that nano-sized ion conductor infiltration significantly improves the cell performance. The cell provides 1.718 Wcm(-2) maximum power density at an operation temperature of 750 degrees C. The high performance is attributed to increase in the oxide ion conductivity and three phase boundaries of both anode and cathode layers by nano ion-conductor infiltration.Öğe Effects of pore former type on mechanical and electrochemical performance of anode support microtubes in solid oxide fuel cells(Pergamon-Elsevier Science Ltd, 2022) Cigdem, Timurkutluk; Onbilgin, Sezer; Timurkutluk, Bora; Pamuk, IbrahimThe effects of pore formers added into the extrusion slurry of anode support microtubes on the mechanical and electrochemical performance of the microtubes are investigated in this study. For this purpose, several microtubular anode supports are fabricated by using various pore formers with different particle sizes. The effect of pore former content is also taken into consideration for a certain pore former type. The flexural strengths of the anode support microtubes are measured via three point bending tests and reliability analysis is performed. The porosities of the anode supports are also determined along with microstructural investigations. The results reveal that the flexural strength decreases with increasing the particle size of the pore former employed for a fixed pore former content and with increasing the pore former content for a certain pore former material considered. In addition, a number microtubular cells are fabricated based on the various microtubular anode supports and their electrochemical performances are evaluated via performance and impedance tests. The impedance results indicate that the cell performance is mainly restricted by the diffusion polarization. Among the pore former materials considered in this study, the highest cell performance for a certain pore former content of 20 vol% is measured from the cell prepared with graphite (325 mesh) pore former at all temperatures and hydrogen flowrates studied. The optimization studies display that the cell performance can be further improved by increasing the pore former content to 22.5 vol% for this pore former material.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.