Yazar "Sanli, Beyazit Abdurrahman" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A review of the potential involvement of small RNAs in transgenerational abiotic stress memory in plants(Springer Heidelberg, 2024) Junaid, Muhammad Daniyal; Chaudhry, Usman Khalid; Sanli, Beyazit Abdurrahman; Gokce, Ali Fuat; Ozturk, Zahide NeslihanCrop production is increasingly threatened by the escalating weather events and rising temperatures associated with global climate change. Plants have evolved adaptive mechanisms, including stress memory, to cope with abiotic stresses such as heat, drought, and salinity. Stress memory involves priming, where plants remember prior stress exposures, providing enhanced responses to subsequent stress events. Stress memory can manifest as somatic, intergenerational, or transgenerational memory, persisting for different durations. The chromatin, a central regulator of gene expression, undergoes modifications like DNA acetylation, methylation, and histone variations in response to abiotic stress. Histone modifications, such as H3K4me3 and acetylation, play crucial roles in regulating gene expression. Abiotic stresses like drought and salinity are significant challenges to crop production, leading to yield reductions. Plant responses to stress involve strategies like escape, avoidance, and tolerance, each influencing growth stages differently. Soil salinity affects plant growth by disrupting water potential, causing ion toxicity, and inhibiting nutrient uptake. Understanding plant responses to these stresses requires insights into histone-mediated modifications, chromatin remodeling, and the role of small RNAs in stress memory. Histone-mediated modifications, including acetylation and methylation, contribute to epigenetic stress memory, influencing plant adaptation to environmental stressors. Chromatin remodeling play a crucial role in abiotic stress responses, affecting the expression of stress-related genes. Small RNAs; miRNAs and siRNAs, participate in stress memory pathways by guiding DNA methylation and histone modifications. The interplay of these epigenetic mechanisms helps plants adapt to recurring stress events and enhance their resilience. In conclusion, unraveling the epigenetic mechanisms in plant responses to abiotic stresses provides valuable insights for developing resilient agricultural techniques. Understanding how plants utilize stress memory, histone modifications, chromatin remodeling, and small RNAs is crucial for designing strategies to mitigate the impact of climate change on crop production and global food security.Öğe Investigating effect of miR160 through overexpression in potato cultivars under single or combination of heat and drought stresses(Springer, 2021) Sanli, Beyazit Abdurrahman; Ozturk Gokce, Zahide NeslihanPotato (Solanum tuberosum L.) is one of the major tuber crops which is widely grown in the world. Potato growth and development as well as yield is negatively affected by heat and drought stress alone, but combined stress has devastating effect. MicroRNAs are group of small RNAs which play vital role in gene regulation at transcriptional and post-transcriptional level by repressing or inhibiting protein expression of corresponding target. Current study aimed to understand the function of miR160a-5p and its influence on its target gene ARF16 under applied stresses. Potato cultivars tolerant (Unica) and sensitive (Russet Burbank) were tested under drought, heat, and their combination of stresses. The expression of miR160a-5p was revealed to be higher along with the suppression of corresponding target gene ARF16 gene. Transgenic plants also showed improved physiological, and biochemical traits, with lower accumulation of H2O2 and higher levels of proline solely under drought stress conditions. It was also observed that overexpression of miR160a-5p could alter mechanisms for auxin response factor pathways which enabled transgenic plants to have higher tolerance to abiotic stress conditions. Based on our findings, transgenic Unica and Russet Burbank plants showed increased tolerance to drought and heat stress as compared to wild-type plants. This study can be helpful in understanding the role of miR160a-5p in improved tolerance to abiotic stresses.Öğe Unbiased metabolome screen links serum urate to risk of Alzheimer's disease(Elsevier Science Inc, 2022) Sanli, Beyazit Abdurrahman; Whittaker, Katherine J.; Motsi, Gamuchirai K.; Shen, Emery; Julian, Thomas H.; Cooper-Knock, JohnathanAlzheimer's disease (AD) is a progressive and fatal neurodegenerative disease caused by a combination of genetic and environmental risk factors. The serum metabolome refers to a set of small-molecules which are an important determinant of cellular health. We obtained genome-wide association study (GWAS) summary statistics for serum concentrations of 376 metabolites which were population matched with 2 GWAS studies of AD. For each metabolite we performed 2-sample MR (2SMR) using an inverse variance weighted (IVW) estimate for significance testing. After Bonferroni multiple testing correction one metabo-lite was causally linked to AD in both GWAS: serum urate. This result was supported by robust 2SMR measures and sensitivity analyses. We applied 2SMR to test for a causal relationship between serum urate and other neurodegenerative diseases: Parkinson disease (PD) and Amyotrophic lateral sclerosis (ALS). In ALS but not PD we identified a nominally significant link between serum urate and disease-risk, although in this case increased serum urate was protective. We conclude that serum urate is a modulator of risk for neurodegeneration. Our work has implications for the design of preventative interventions.(c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license( http://creativecommons.org/licenses/by/4.0/ )