Yazar "Sargin, Idris" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe False flax (Camelina sativa) seed oil as suitable ingredient for the enhancement of physicochemical and biological properties of chitosan films(Elsevier, 2018) Gursoy, Mehtap; Sargin, Idris; Mujtaba, Muhammad; Akyuz, Bahar; Ilk, Sedef; Akyuz, Lalehan; Kaya, MuratTo overcome the drawbacks of synthetic films in food packaging industry, researchers are turned to natural bio-based edible films enriched with various plant additives. In current study chitosan blend films were produced by incorporating Camelina sativa seed oil at varying concentrations to chitosan matrix. The chitosan blend films were characterized both physicochemically (structural, morphological, thermal, optical and mechanical) and biologically (antimicrobial and antioxidant activity). The incorporation of C sativa seed oil notably enhanced thermal stability, antioxidative, anti-quorum sensing and antimicrobial activity. Except elongation at break, other mechanical properties of the blend films were not affected by incorporation of C sativa seed oil. The surface morphology of blend films was recorded as slightly rough, non-porous and fibre-free surface. As it was expected the optical transmittance in visible region was gradually decreased with increasing fraction of seed oil. Interestingly the hydrophilicity of the blend films revealed a swift increase which can be explained by the formation of micelle between glycerol and Tween 40 in blend films. This study provides valuable information for C sativa seed oil to be used as a blending ingredient in chitosan film technology. (C) 2018 Elsevier B.V. All rights reserved.Öğe How Taxonomic Relations Affect the Physicochemical Properties of Chitin(SPRINGER, 2016) Kaya, Murat; Baublys, Vykintas; Sargin, Idris; Satkauskiene, Ingrida; Paulauskas, Algimantas; Akyuz, Bahar; Yurtmen, HuseyinChitin specimens from 16 arthropod species (13 of Insecta and 3 of Arachnida) were isolated for the first time using the same method. Fourier Transform Infrared Spectrometry (FTIR), Thermogravimetric Analysis (TGA), X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and elemental analysis have been applied to determine how physicochemical properties of chitin specimens are affected by taxonomic relationship. The characterisation studies revealed that physicochemical nature of the chitin specimens differed greatly and were found partially specific to taxa. Significant differences in the surface morphologies of chitin specimens were observed even in the same order. However, the chitin contents were recorded to be specific to the order in the class Insecta. The highest chitin content was observed in Coleoptera (18.2-25.2 %) followed by Hemiptera (10.6-14.5 %), Odonata (9.5-10.1 %), Hymenoptera (7.8-9.3 %), Diptera (8.1 %), Blattodea (4.7 %). In addition, the crystalline index (CrI) values of chitin specimens from Coleoptera were found to be higher than the other orders in Insecta. This study revealed that the chitin contents and CrI values can be related to taxonomical relationships.Öğe Production and characterization of chitosan-fungal extract films(Elsevier, 2020) Koc, Behlul; Akyuz, Lalehan; Cakmak, Yavuz Selim; Sargin, Idris; Salaberria, Asier M.; Labidi, Jalel; Ilk, SedefA fungal extract obtained from an edible species (Tricholoma terreum) was used to produce chitosan-based films. Fungal extracts were analyzed using HPLC and chitosan-based films were characterized with FT-IR, SEM, DSC and TGA analysis. High phenolic content was found in the fungal extracts using HPLC. FT-IR results showed that fungal extracts were successfully added into the chitosan films. The addition of fungal extract increased elasticity, hydrophobicity and antioxidant and antimicrobial activity of the chitosan films. Additionally, antiquorum sensing and antimicrobial activities of chitosan-fungal extract films were found to be much higher than gentamicin (a commonly used antibiotic). However, incorporation of extracts into chitosan films decreased transparency and thermal stability. All these results suggested that chitosan-fungal extract films might be beneficially used to improve food packaging technology.Öğe Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity(Elsevier Science Bv, 2018) Akyuz, Lalehan; Kaya, Murat; Mujtaba, Muhammad; Ilk, Sedef; Sargin, Idris; Salaberria, Asier M.; Labidi, JalelIn the current study, capsaicin, a plant alkaloid with high antioxidative, anti-inflammatory, antiobesity, anticancer and analgesic properties, was used in the film technology for the first time. In the same regard, chitosan (as a versatile animal-based polymer) was blended with capsaicin at three different concentrations to obtain edible films. The produced films were characterized by FT-IR, SEM, and DSC. Mechanical, transmittance, hydrophobicity, anti-quorum sensing, antimicrobial and antioxidant properties were also examined. Incorporation of 0.6 mg of capsaicin into the chitosan matrix (200 mg dissolved in 1% acetic acid solution) was observed as an optimal concentration for boosting up three film properties including mechanical, optical and surface morphology. A continuous improvement was recorded in anti-quorum sensing and antimicrobial activities, antioxidative and hydrophobicity with increasing concentration of capsaicin in the film. In further studies, chitosan-capsaicin blend films can be used as a food packaging material as well dermal and wound healing patches. (C) 2018 Elsevier B.V. All rights reserved.