Yazar "Sattarkhanov, Kurshod" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bakır kaplama ve ENG katkılamanın metal hidrür peletlerinin hidrojen depolama kinetiklerine etkisinin deneysel incelenmesi(Niğde Ömer Halisdemir Üniversitesi, 2024) Sattarkhanov, Kurshod; Kaplan, YükselBu çalışmada, hidrojen şarj/deşarj işlemlerinin kinetiğini geliştirmek için metal hidrür peletler geliştirildi. Genişletilmiş doğal grafit (ENG) ve bakır katkı maddelerinin eklenmesiyle hidrojen depolama malzemelerinin ısı transfer katsayılarında ve depolama kapasitelerinde iyileşmeler gerçekleşmiştir. Reaktör, toz halinde 1000 g depolama malzemesi veya her biri 40 g ağırlığında 25 adet pellet içerecek şekilde tasarlanmıştır. Isı iletkenliği arttırılmış depolama malzemelerinin hidrojen şarj/deşarj işlemi üzerindeki etkisi, 10 bar basınç altında bir metal hidrür reaktöründe deneysel olarak incelenmiştir. Aktivasyon işlemini tamamlamak için reaktör vakum altında (10?4 mmHg) yaklaşık 200 °C'de 2 saat süreyle ısıtılmıştır. Isıtma işleminin ardından reaktörün ortam sıcaklığına kadar soğumasına izin verilmiş ve daha sonra 50 dakika boyunca 10 bar basınçta reaktöre hidrojen şarj edilmiştir. Hidrojen şarj/deşarj prosedürü 20 döngüye kadar tekrarlanmış olup döngüler arasındaki değişiklikleri izlemek için 5 döngü aralıklarla veri kayıtları alınmıştır. 10 bar basınç altında 10 şarj/deşarj döngüsünden sonra reaktörde depolanan hidrojen, pelet formunda yaklaşık 9,93 g ve toz formunda 7,20 g olarak gerçekleşmiştir.Öğe The effect of expanded natural graphite added at different ratios of metal hydride on hydrogen storage amount and reaction kinetics(Pergamon-Elsevier Science Ltd, 2024) Atalmis, Gamze; Sattarkhanov, Kurshod; Demiralp, Mehmet; Kaplan, YukselIn this study, metal hydride pellets were formed to accelerate the hydrogen charge/ discharge processes. The heat transfer in hydrogen storage material was improved by employing Expanded natural graphite (ENG). The ideal grinding time for LaNi5 material was determined to be 5 h. In the study, LaNi5 alloy was mixed with ENG in 1%, 5%, 10%, and 20% proportions by weight. The amount of hydrogen stored in the reactor by each mixture at 10 bar pressure was measured depending on time. Within the scope of experimental studies, the thermal conductivity coefficient of LaNi5 materials containing 20% ENG by weight was increased by 1380%. Thus, hydrogen charge/discharge processes were accelerated. Storage materials were characterized by XRD and SEM. The thermal conductivity coefficients were measured with the Hot Disk Thermal Constants Analyzer device, and the densities were measured with the Helium Pycnometer device. LaNi5 was chosen as the storage material in the study. It was found that 1-5 wt% ENG addition increased the reaction kinetics without significantly reducing the hydrogen storage capacity in storage alloys. However, in alloys with higher ENG concentrations, the hydrogen storage capacity decreased. The reaction kinetics were increased in the range of 135-260%. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Öğe The effect of powder and pellet forms of added metal hydride materials on reaction kinetics and storage(Pergamon-Elsevier Science Ltd, 2024) Atalmis, Gamze; Sattarkhanov, Kurshod; Kaplan, Ruveyda N.; Demiralp, Mehmet; Kaplan, YukselIn the present research, metal hydride pellets were synthesized to enhance the kinetics of hydrogen charge/ discharge processes. By incorporating ENG (expanded natural graphite) and copper additives, we observed improvements in the heat transfer coefficients and storage capacities of the hydrogen storage materials. The reactor is designed to contain 1000 g of storage material in the form of powder or 25 pellets each weighing 40 g. The influence of storage materials with enhanced thermal conductivity on the hydrogen charge/discharge process was experimentally studied in a metal hydride reactor under a pressure of 10 bar. The reactor was heated under vacuum (10-4-4 mmHg) to approximately 200 degrees C for 2 h in order to complete the activation process. Following the heating process, the reactor was allowed to cool to ambient temperature, after which the hydrogen was introduced to the reactor at 10 bar pressure for 50 min. The absorption and desorption procedure was reiterated up to 20 cycles, and recordings of data were taken at intervals of 5 cycles to monitor the variations between the cycles. After 10 charge/discharge cycles under pressure of 10 bar, the hydrogen stored in the reactor amounted to approximately 9.93 g in pellet form and 7.20 g in powder form.