Yazar "Siebel, Wolfgang" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Quaternary bimodal volcanism in the Nigde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications(SPRINGER, 2014) Aydin, Faruk; Schmitt, Axel K.; Siebel, Wolfgang; Sonmez, Mustafa; Ersoy, Yalcin; Lermi, Abdurrahman; Duncan, RobertThe late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr-Nd-Pb and delta O-18 isotopes) and geochronological (U-Pb zircon and Ar-Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Ni g de Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by Sr-87/Sr-86 = 0.7038, Nd-143/Nd-144 = 0.5128, Pb-206/Pb-204 = 18.80, Pb-207/Pb-204 = 15.60 and Pb-208/Pb-204 = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of Nd-143/Nd-144 isotope ratios (0.5126-0.5128) and are homogeneous in Pb isotope composition (Pb-206/Pb-204 = 18.84-18.87, Pb-207/Pb-204 = 15.64-15.67 and Pb-208/Pb-204 = 38.93-38.99). Sr-87/Sr-86 isotopic compositions of mafic (0.7038-0.7053) and felsic (0.7040-0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon delta O-18 values (5.6 +/- 0.6 %) overlapping mantle values (5.3 +/- 0.3 %), consistent with an origin by fractional crystallization from a mafic melt with very minor continental crustal contamination. The geochronological and geochemical data suggest that mafic and felsic volcanic rocks of the NVC are genetically closely related to each other. Mafic rocks show a positive trend between Sr-87/Sr-86 and Th, suggesting simultaneous assimilation and fractional crystallization, whereas the felsic rocks are characterized by a flat or slightly negative variation. High Sr-87/Sr-86 gneisses are a potential crustal contaminant of the mafic magmas, but the comparatively low and invariant Sr-87/Sr-86 in the felsic volcanics suggests that these evolved dominantly by fractional crystallization. Mantle-derived basaltic melts, which experienced low degree of crustal assimilation, are proposed to be the parent melt of the felsic volcanics. Geochronological and geochemical results combined with regional geological and geophysical data suggest that bimodal volcanism of the NVC and the CVP, in general, developed in a post-collisional extensional tectonic regime that is caused by ascending asthenosphere, which played a key role during magma genesis.Öğe Slab break-off-related magnesian andesites and dacites with adakitic affinity from the early Quaternary Keciboyduran stratovolcano, Cappadocia province, central Turkey: evidence for slab/sediment melt-mantle interaction and magma mixing(Springer, 2022) Aydin, Faruk; Sonmez, Mustafa; Siebel, Wolfgang; Karsli, Orhan; Lermi, AbdurrahmanVoluminous moderate- to high-magnesian [Mg# = molar Mg/(Mg- + Fe2+) = 44-64] andesitic and dacitic rocks with high silica (mostly 61-66 wt%) adakitic affinity (Y = 13-22, Yb = 1.3-2.1, Sr/Y = 18-44, La/Yb = 10-25) and common mafic magmatic enclaves (MMEs) are first reported in the Keciboyduran stratovolcano (KSV) from the Cappadocia volcanic province (CVP), Central Anatolia, Turkey. We present comprehensive whole-rock geochemistry and Sr-Nd-Pb isotope data, mineral chemical compositions and 40Ar-39Ar ages for KSV samples. Based on the volcanostratigraphy and 40Ar-39Ar dating results, two successive eruption ages of 2.2-1.6 Ma (stage I: amphibole-rich) and 1.6-1.2 Ma (stage II: pyroxene-rich) were established for the KSV, corresponding to the Gelasian and Calabrian stages of Early Pleistocene, respectively. Textural and geochemical evidence indicates that the KSV magnesian andesites-dacites are products of a hybrid magma formed by mixing between mantle-derived mafic and crust-derived felsic magmas with further fractionation and minor contamination during magma storage and ascent. Our new data, combined with previous geological and geophysical results suggest that parental magnesian mafic melts of the KSV rocks originated from a heterogenous mantle source generated through the metasomatism of mantle wedge material by subducted sediment-derived melts, and then partially melted through asthenospheric upwelling in response to slab break-off. The mafic magma underplated the overlying lower crust, resulting in its partial melting to generate crustal felsic magma. Both magmas mixed at lower crustal levels creating MME-rich hybrid magmas. Subsequently, the hybrid magmas were emplaced at different depths of the crust (c. 4-11 and 11-15 km for the stage I and II, respectively), where they crystallized at moderate temperatures (c. 1180-840 degrees C) and under relatively high oxygen fugacity (LogfO(2) = - 11.4 to - 9.2), water-rich (H2Omelt = 5.6-3.6 wt%) and polybaric (similar to 1.2 to 5.1 kbars) conditions, and underwent fractionation of primarily amphibole +/- pyroxene causing adakitic affinity. We propose a new petrogenetic model for the early Quaternary magnesian/adakitic andesites/dacites of the CVP in a post-subduction tectonic setting. Our results provide robust evidence for slab break-off of the eastern Cyprus oceanic lithosphere and put further constraints on the tectonic evolution of the eastern Mediterranean collision zone during the Early Quaternary.