Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Stezowski, O." seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Artificial neural networks for neutron/? discrimination in the neutron detectors of NEDA
    (Elsevier, 2021) Fabian, X.; Baulieu, G.; Ducroux, L.; Stezowski, O.; Boujrad, A.; Clement, E.; Coudert, S.
    Three different Artificial Neural Network architectures have been applied to perform neutron/gamma discrimination in NEDA based on waveform and time-of-flight information. Using the coincident gamma-rays from AGATA, we have been able to measure and compare on real data the performances of the Artificial Neural Networks as classifiers. While the general performances are quite similar for the data set we used, differences, in particular related to the computing times, have been highlighted. One of the Artificial Neural Network architecture has also been found more robust to time misalignment of the waveforms. Such a feature is of great interest for online processing of waveforms.
  • Küçük Resim Yok
    Öğe
    Energy Response of LaBr3
    (IOP PUBLISHING LTD, 2012) Erturk, S.; Maj, A.; Ciemala, M.; Stezowski, O.; Courtin, S.; Strachan, J.; Kumar, S.; Freeman, S; Andreyev, A; Bruce, A; Deacon, A; Jenkins, D; Joss, D; MacGregor, D; Regan, P; Simpson, J; Tungate, G; Wadsworth, R; Watts, D
    In recent years, important developments in scintillator technology have been made in the Lanthanum Halogen LaBr3 (Ce) crystal, which has high-energy separation, very good timing-properties and a stopping-power that can be used as a detector at room temperature. The international PARIS project will be created as a prototype of this detector system, which will be used in SPIRAL2 as a stand alone or in collaboration with the EXOGAM or AGATA detector array. A fusion evaporation reaction is used to produce exotic nuclei and is then transferred at a very high angular momentum to compound nuclei. Due to the accompanying high rotation, the exotic shape starts changing into vibrational and rotational collective phenomena which hitherto have together become difficult to detect and fully understand. In order to perform this type of research, in addition to conventional known gamma-ray detectors, high-efficiency gamma-ray detectors that can effectively identify gamma rays are also required as calorimeters. LaBr3 is planned to use such means. Results of ongoing analysis for energy and the time response of LaBr3 will be presented.
  • Küçük Resim Yok
    Öğe
    THE PARIS PROJECT
    (JAGIELLONIAN UNIV PRESS, 2009) Maj, A.; Azaiez, F.; Jenkins, D.; Schmitt, Ch.; Stezowski, O.; Wieleczko, J. P.; Courtin, S.
    The PARIS project is ail initiative to develop and build a high-efficiency gamma-calorimeter principally for Use at SPIRAL2. It is intended to comprise a double shell of scintillators and use the novel scintillator material LaBr3(Ce), which promises a step-change in energy and time resolutions over what is achievable using conventional scintillators. The array could be used in a stand-alone mode, in conjunction with an inner particle detection system, or with high-purity germanium arrays. Its potential physics opportunities as well as initial designs and simulations will be discussed.
  • Küçük Resim Yok
    Öğe
    The Paris project
    (2009) Maj, A.; Azaiez, F.; Jenkins, D.; Schmitt, C.; Stezowski, O.; Wieleczko, J.P.; Balabanski, D.
    The PARIS project is an initiative to develop and build a high-efficiency gamma-calorimeter principally for use at SPIRAL2. It is intended to comprise a double shell of scintillators and use the novel scintillator material LaBr3(Ce), which promises a step-change in energy and time resolutions over what is achievable using conventional scintillators. The array could be used in a stand-alone mode, in conjunction with an inner particle detection system, or with high-purity germanium arrays. Its potential physics opportunities as well as initial designs and simulations will be discussed.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim