Yazar "Tetteh, Samuel Edem Kodzo" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Hydrogeochemical evolution and assessment of groundwater quality for drinking and irrigation purposes in the Gushegu Municipality and some parts of East Mamprusi District, Ghana(Springer, 2023) Sunkari, Emmanuel Daanoba; Abangba, Timothy; Ewusi, Anthony; Tetteh, Samuel Edem Kodzo; Ofosu, EnochThe Gushegu Municipality and the East Mamprusi District in Ghana are dominated by the Oti/Pendjari Group within the Voltaian Supergroup. The major rock types found in the area are quartzites, siltstones, conglomerates, and shales with minor occurrences of tillites, silexites, limestones, and barite-rich dolomites. The inhabitants of the area are mainly peasant farmers, and their activities might be influencing the groundwater chemistry, but little is known about the quality of the groundwater. Therefore, this study evaluated the suitability of groundwater resources in the Gushegu Municipality, and some parts of the East Mamprusi District in Ghana for domestic and irrigation uses, employing hydrogeochemical graphing, geochemical modelling, multivariate statistical analysis, and computation of water quality indices. Sodium (Na+), with concentrations ranging from 4.93 to 323 mg/L and a mean of 169 mg/L, is found to be the major cation in the groundwater, while bicarbonate (HCO3-), with concentrations ranging from 19.9 to 685 mg/L and a mean of 397 mg/L, is the major anion in the area. The dominant hydrochemical facies is the Na-HCO3 type, accounting for about 72.7% of the study area's groundwater and is influenced by silicate weathering, carbonate mineral dissolution, and ion exchange reactions. Other factors accounting for this dominance may be anthropogenic activities, including the dissolution and leaching of fertilizers from farmlands. Overall, this study reveals that the groundwater in the area is suitable for drinking based on the WQI classification. There are localized contaminations with respect to B and F-, making the water in those areas unsuitable for drinking. Also, the groundwater in the area is unsuitable for irrigation purposes due to the high Na% values (43 to 99% with a mean of 86%), magnesium hazard values (1 to 312 with a mean of 88), and sodium adsorption ratio (0.57 to 42.4 with a mean of 12.7). All these indices exceed their respective standards for irrigation purposes.Öğe Petrography and structural features of the Precambrian basement rocks in the Benin-Nigerian Shield, NW Nigeria: Implications for their correlation with South Atlantic Precambrian terranes(Amer Inst Mathematical Sciences-Aims, 2022) Sunkari, Emmanuel Daanoba; Kore, Basiru Mohammed; Tetteh, Samuel Edem KodzoThis study investigated the petrographic and structural features of the Precambrian (Neoproterozoic) basement rocks of the Benin-Nigerian Shield that crop out in northwestern Nigeria within Kanoma and its environs to give an insight into the evolution and deformational episodes that pervaded them. The major rock types in the area are schists and quartzites, which have been intruded by granitic rocks that appear to be metamorphosed. The origin of these rocks is attributed to the Eburnean Precambrian orogenic episode and the Pan-African orogeny, which started and ended with the intrusion of the granite suites. The dominant mineralogy associated with the rock types includes quartz, orthoclase, plagioclase, microcline, biotite, chlorite, and very few accessory minerals. The schist shows the dominance of quartz, feldspars (alkali and plagioclase), biotite, muscovite, chlorite, and opaque minerals. The quartzite is typically dominated by quartz that appears recrystallized in places, whereas the meta-granite contains quartz, feldspars (alkali and plagioclase), biotite, and opaque minerals. Structural features such as joints, quartz veins with minor folds, and faults observed in the lithological units have a predominant N-S trend and are the imprints of the last tectonic event (Pan-African orogeny). The level of deformation in Kanoma led to the development of N to NNE trending moderately (S1) to steeply (S2) dipping foliations in the schist. The evolution of these deformational mechanisms from moderately dipping foliations to steeply dipping foliations along the N to NNE -trend is associated with late orogenic uplift and exhumation following oblique convergence during the Pan-African orogeny. Structural overprinting relations recognized within Kanoma and its environs allow us to decipher the geologic structures into three successive Pan-African deformational events (D1-D3). D1 fabrics are manifested by simple anticline micro folds in the schist. The D2 structures are the predominant ones in the area comprising the N-S directional joints and faults. The D3 phase of deformation is a progressive one, which started as N-S high angle thrusts and thrust-related folds that resulted from the NE-SW contraction during the orogenic episodes. The studied rocks can be correlated with the Pan-African and Brasiliano belts based on their overlapping features.