Yazar "Thomson, J." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Competing quasiparticle configurations in W-163(AMER PHYSICAL SOC, 2010) Thomson, J.; Joss, D. T.; Paul, E. S.; Scholey, C.; Simpson, J.; Erturk, S.; Hadinia, B.Excited states in the neutron-deficient nuclide W-163 were investigated using the Cd-106(Ni-60, 2pn)W-163 reaction at a beam energy of 270 MeV. The level scheme for W-163 was extended significantly with the observation of five new band structures. The yrast band based on a 13/2(+) isomeric state is extended up to (57/2(+)). Two band structures were established on the 7/2(-) ground state. Quasiparticle configuration assignments for the new band structures were made on the basis of cranked Woods-Saxon shell-model calculations. The results reported in this article suggest that the negative-parity nu(f(7/2), h(9/2)) orbitals are responsible for the first rotational alignment in the yrast band.Öğe gamma-ray spectroscopy of Ta-163(AMER PHYSICAL SOC, 2009) Sandzelius, M.; Cederwall, B.; Ganioglu, E.; Thomson, J.; Andgren, K.; Bianco, L.; Johnson, A.Excited states in Ta-163 have been identified for the first time using the Cd-106(Ni-60,3p) fusion evaporation reaction. gamma rays were detected using the JUROGAM gamma-ray spectrometer and recoil discrimination was achieved using the recoil ion transport unit (RITU) gas-filled separator in conjunction with the GREAT spectrometer situated at the focal plane of the RITU. The yrast states are assigned to a strongly coupled rotational band based on a pi h(11/2) configuration. This structure exhibits large signature splitting at low spins that disappears after the paired band crossing because of the alignment of a pair of i(13/2) neutrons. This effect is ascribed to triaxial shape changes induced by the core-polarizing properties of the deformation-aligned h(11/2) proton and the rotation-aligned i(13/2) neutrons. Two additional strongly coupled band structures have been established and are discussed in terms of octupole-vibrational and two-quasiparticle excitations built on the yrast structure. The experimental results are compared with predictions from cranked-shell-model and total-Routhian-surface calculations.