Yazar "Tindas, Ilknur" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes(Frontiers Media Sa, 2020) Demirel, Ufuk; Morris, Wayne L.; Ducreux, Laurence J. M.; Yavuz, Caner; Asim, Arslan; Tindas, Ilknur; Campbell, RaymondPotato production is often constrained by abiotic stresses such as drought and high temperatures which are often present in combination. In the present work, we aimed to identify key mechanisms and processes underlying single and combined abiotic stress tolerance by comparative analysis of tolerant and susceptible cultivars. Physiological data indicated that the cultivars Desiree and Unica were stress tolerant while Agria and Russett Burbank were stress susceptible. Abiotic stress caused a greater reduction of photosynthetic carbon assimilation in the susceptible cultivars which was associated with a lower leaf transpiration rate. Oxidative stress, as estimated by the accumulation of malondialdehyde was not induced by stress treatments in any of the genotypes with the exception of drought stress in Russett Burbank. Stress treatment resulted in increases in ascorbate peroxidase activity in all cultivars except Agria which increased catalase activity in response to stress. Transcript profiling highlighted a decrease in the abundance of transcripts encoding proteins associated with PSII light harvesting complex in stress tolerant cultivars. Furthermore, stress tolerant cultivars accumulated fewer transcripts encoding a type-1 metacaspase implicated in programmed cell death. Stress tolerant cultivars exhibited stronger expression of genes associated with plant growth and development, hormone metabolism and primary and secondary metabolism than stress susceptible cultivars. Metabolite profiling revealed accumulation of proline in all genotypes following drought stress that was partially suppressed in combined heat and drought. On the contrary, the sugar alcohols inositol and mannitol were strongly accumulated under heat and combined heat and drought stress while galactinol was most strongly accumulated under drought. Combined heat and drought also resulted in the accumulation of Valine, isoleucine, and lysine in all genotypes. These data indicate that single and multiple abiotic stress tolerance in potato is associated with a maintenance of CO2 assimilation and protection of PSII by a reduction of light harvesting capacity. The data further suggests that stress tolerant cultivars suppress cell death and maintain growth and development via fine tuning of hormone signaling, and primary and secondary metabolism. This study highlights potential targets for the development of stress tolerant potato cultivars.Öğe Soybean: A new frontier in understanding the iron deficiency tolerance mechanisms in plants(Springer, 2017) Aksoy, Emre; Maqbool, Amir; Tindas, Ilknur; Caliskan, SevgiSoybean (Glycine max L.) is an agronomic crop belonging to the legume family, and is the top second plant species with the highest iron (Fe) content. When exposed to Fe-deficiency during growth in the field, soybean yields are negatively affected from impaired chlorophyll biosynthesis, which is called as Fe-deficiency chlorosis (IDC). Although IDC in soybeans has been observed for years, the molecular studies to develop IDC-tolerant soybean cultivars were slower compared to the studies of other plant species. Recently, there are efforts to understand the molecular mechanisms behind IDC tolerance and use them to develop IDC-tolerant soybeans via molecular breeding and transgenic approaches. Genetic transformation of soybean is relatively easy, and loss-of-function mutant collections are readily available. There is a divergence in IDC tolerance among soybean cultivars, suggesting a potential improvement of soybean tolerance to IDC via molecular breeding. This mini review covers the latest developments in the field of soybean research to elucidate the molecular mechanisms of IDC tolerance. Soybean should be used a new model plant in understanding the Fe-deficiency tolerance mechanisms especially because of its high potential to be used as a bio-fortified crop to treat the iron deficiency in humans in the future.