Yazar "Tosunlar M.B." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Determination of deterioration of the main facade of the Ferit Paşa Cistern by non-destructive techniques (Konya, Turkey)(Springer Verlag, 2018) İnce İ.; Bozdağ A.; Tosunlar M.B.; Hatır M.E.; Korkanç M.Building stones have long been one of the most widely used construction materials in the world. Building stones used in historical monuments are deteriorated partly or completely depending on the environmental and atmospheric effects. In recent years, non-destructive test methods have been used to assess deterioration of building stones used in historical monuments. Gödene stone is one of the building stones being widely used in the historical buildings in the Konya region, Central Anatolia. The most deterioration effects are observed in the Ferit Paşa Cistern among the historical structures built with Gödene stone in the region. The aim of this study is to assess the deteriorating effects in the street façade of the Ferit Paşa Cistern via non-destructive testing methods (Schmidt hardness rebound value, P-wave velocity, humidity measurement and thermal imaging) and create maps of deteriorated features. Turkey’s historic places are integrated to Turkish culture, efforts are made to conserve heritage through rehabilitation. Therefore, this study will help developers and federal managers during the project planning stage by providing technical data. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.Öğe Interpreting sulfated crusts on natural building stones using sulfur contour maps and infrared thermography(Springer Verlag, 2019) Korkanç M.; Hüseyinca M.Y.; Hatır M.E.; Tosunlar M.B.; Bozdağ A.; Özen L.; İnce İ.In this study, the effect of sulfation due to air pollution in the portals of the Ince Minareli Madrasa built of pyroclastic rocks and the Karatay Madrasas (Konya, Turkey) built of marble was investigated. Since the sulfur element in sulfate salts is represented as sulfate, the sulfur contour maps (SCM), obtained by transferring the portable X-ray fluorescence measurements onto the orthophotographs, also show the sulfated crust formation, distribution and anomaly regions on the portal surfaces. Additionally, the anomaly regions originating from the difference in thermal conduction between the sulfated crusts and portal surfaces on thermal camera images were determined, and they were observed to be compatible with the anomaly regions on SCM. However, the size of this correlation depends on the chemistry of the building stone and the thickness of the sulfated crusts. Then, it was determined that the anomaly regions on SCM were distributed in relation to the washing out of sulfated crusts by rainfall and capillary moisture content. Accordingly, portal surfaces were divided into three as the sheltered, washing and capillary regions. Consequently, it was demonstrated that the sulfation effect due to air pollution on historical building surfaces which have appropriate rock chemistry can be determined by non-destructive testing methods like using the SCM supported by infrared thermography. The fact that the method is simple and repeatable and is easily applicable to other buildings was considered as the most important success of the method. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.