Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Uzmay I." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A neural network for analysis of vibration in mechanical systems arising from unbalance
    (2001) Kalkat M.; Yildirim S.; Uzmay I.
    The paper presents an investigation on vibrations of mechanical systems arising from unbalanced masses. At the experimental stage, a power transmission shaft is driven at different operating speeds, therefore, the parameters, such as displacement, velocity and acceleration in vertical direction due to body vibrations are measured at various points on the frame before and after balancing. Balancing has provided a definite decrease in the amplitudes of vibration parameters. In addition to these studies mentioned above, the use of Neural Network (NN) for vibration analysis of a frame due to unbalanccd transmission shaft is also achieved. The results show that the NN approach exactly follows the foregoing results. This implies the necessity of the non-linear modelling capabilities of the NN for vibration problems of mechanical systems.
  • Küçük Resim Yok
    Öğe
    Design of artificial neural networks for rotor dynamics analysis of rotating machine systems
    (2005) Kalkat M.; Yildirim S.; Uzmay I.
    A Neural Network predictor investigation is presented for analyzing vibration parameters of the rotating system. The vibration parameters of the system such as amplitude, velocity and acceleration in vertical direction were measured at the bearing points. The system's vibration and noise were analyzed for different working conditions. The designed neural predictor has three layers which are input, hidden and output layers. In the hidden layer 10 neurons were used for this approximation. The results showed that the network would be used as analyzer of such systems in experimental applications. © 2005 Elsevier Ltd. All rights reserved.

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim