Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Wang, Hongrong" seçeneğine göre listele

Listeleniyor 1 - 9 / 9
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Dietary L-Arginine or N-Carbamylglutamate Alleviates Colonic Barrier Injury, Oxidative Stress, and Inflammation by Modulation of Intestinal Microbiota in Intrauterine Growth-Retarded Suckling Lambs
    (Mdpi, 2022) Zhang, Hao; Zheng, Yi; Zha, Xia; Ma, Yi; Liu, Xiaoyun; Elsabagh, Mabrouk; Wang, Hongrong
    Our previous studies have revealed that dietary N-carbamylglutamate (NCG) and L-arginine (Arg) supplementation improves redox status and suppresses apoptosis in the colon of suckling Hu lambs with intrauterine growth retardation (IUGR). However, no studies have reported the function of Arg or NCG in the colonic microbial communities, barrier function, and inflammation in IUGR-suckling lambs. This work aimed to further investigate how dietary Arg or NCG influences the microbiota, barrier function, and inflammation in the colon of IUGR lambs. Forty-eight newborn Hu lambs of 7 d old were assigned to four treatment groups (n = 12 per group; six male, six female) as follows: CON (normal birth weight, 4.25 +/- 0.14 kg), IUGR (3.01 +/- 0.12 kg), IUGR + Arg (2.99 +/- 0.13 kg), and IUGR + NCG (3.03 +/- 0.11 kg). A total of 1% Arg or 0.1% NCG was supplemented in a basal diet of milk replacer, respectively. Lambs were fed the milk replacer for 21 d until 28 d after birth. Compared to the non-supplemented IUGR lambs, the transepithelial electrical resistance (TER) was higher, while fluorescein isothiocyanate dextran 4 kDa (FD4) was lower in the colon of the NCG- or Arg-supplemented IUGR lambs (p < 0.05). The IUGR lambs exhibited higher (p < 0.05) colonic interleukin (IL)-6, IL-1 beta, tumor necrosis factor (TNF)-alpha, reactive oxygen species (ROS), and malondialdehyde (MDA) levels than the CON lambs; the detrimental effects of IUGR on colonic proinflammatory cytokine concentrations and redox status were counteracted by dietary Arg or NCG supplementation. Both IUGR + Arg and IUGR + NCG lambs exhibited an elevated protein and mRNA expression of Occludin, Claudin-1, and zonula occludens-1 (ZO-1) compared to the IUGR lambs (p < 0.05). Additionally, the lipopolysaccharide (LPS) concentration was decreased while the levels of acetate, butyrate, and propionate were increased in IUGR + Arg and IUGR + NCG lambs compared to the IUGR lambs (p < 0.05). The relative abundance of Clostridium, Lactobacillus, and Streptococcus was lower in the colonic mucosa of the IUGR lambs than in the CON lambs (p < 0.05) but was restored upon the dietary supplementation of Arg or NCG to the IUGR lambs (p < 0.05). Both Arg and NCG can alleviate colonic barrier injury, oxidative stress (OS), and inflammation by the modulation of colonic microbiota in IUGR-suckling lambs. This work contributes to improving knowledge about the crosstalk among gut microbiota, immunity, OS, and barrier function and emphasizes the potential of Arg or NCG in health enhancement as feed additives in the early life nutrition of ruminants.
  • Küçük Resim Yok
    Öğe
    Dietary N-carbamylglutamate or L-arginine supplementation improves hepatic energy status and mitochondrial function and inhibits the AMP-activated protein kinase- peroxisome proliferator-activated receptor ? coactivator-1?-transcription factor A pathway in intrauterine-growth-retarded suckling lambs
    (Keai Publishing Ltd, 2021) Zhang, Hao; Liu, Xiaoyun; Ren, Shengnan; Elsabagh, Mabrouk; Wang, Mengzhi; Wang, Hongrong
    The objective of this study was to investigate the effects of dietary administration of L-arginine (Arg) or N-carbamylglutamate (NCG) on hepatic energy status and mitochondrial functions in suckling Hu lambs with intrauterine growth retardation (IUGR). Forty-eight newborn Hu lambs of 7 d old were allocated into 4 treatment groups of 12 lambs each, in triplicate with 4 lambs per replicate (2 males and 2 females) as follows: CON (lambs of normal birth weight, 4.25 +/- 0.14 kg), IUGR (3.01 +/- 0.12 kg), IUGR thorn 1% Arg (2.99 +/- 0.13 kg), or IUGR thorn 0.1% NCG (3.03 +/- 0.11 kg). The experiment lasted for 21 d, until d 28 after birth, and all lambs were fed milk replacer as a basal diet. Compared with IUGR lambs, NCG or Arg administration increased (P < 0.05) the adenosine triphosphate (ATP) level and the activities of complexes I/III/IV, isocitrate dehydrogenase and citrate synthase in the liver. Compared with CON lambs, the relative mRNA levels of adenosine monophosphate-activated protein kinase alpha 1 (AMPK alpha 1), peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC1 alpha) and transcription factor A (TFAM) were increased (P < 0.05) in the liver of IUGR lambs, but were decreased (P < 0.05) in the liver of NCG- or Arg-treated lambs compared with those in the IUGR lambs. Compared with IUGR lambs, NCG or Arg administration decreased (P < 0.05) the total AMPK alpha (tAMPK alpha)-to-phosphorylated AMPK alpha (pAMPK alpha) ratio and the protein expression of PGC1a alpha and TFAM. The results suggested that dietary Arg or NCG supplements improved hepatic energy status and mitochondrial function and inhibited the AMPK-PGC1 alpha-TFAM pathway in IUGR suckling lambs. (C) 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
  • Küçük Resim Yok
    Öğe
    Dietary rumen-protected L-arginine or N-carbamylglutamate attenuated fetal hepatic inflammation in undernourished ewes suffering from intrauterine growth restriction
    (Keai Publishing Ltd, 2021) Zhang, Hao; Zhang, Ying; Ma, Yi; Elsabagh, Mabrouk; Wang, Hongrong; Wang, Mengzhi
    This study aimed to explore whether dietary rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation to feed-restricted pregnant ewes counteracts fetal hepatic inflammation and innate immune dysfunction associated with intrauterine growth retardation (IUGR) in ovine fetuses. On d 35 of pregnancy, twin-bearing Hu ewes (n = 32) were randomly assigned to 4 treatment groups (8 ewes and 16 fetuses per group) and fed diets containing 100% of the NRC requirements (CON), 50% of the NRC requirements (RES), RES + RP-Arg (20 g/d) (RESA), or RES + NCG (5 g/d) (RESN). At 08:00 on d 110 of gestation, fetal blood and liver tissue samples were collected. The levels of triglyceride, free fatty acid, cholesterol and beta-hydroxybutyrate in the fetal blood of RESA and RESN groups were lower (P < 0.05) than those of the RES group, but were higher (P < 0.05) than those of the CON group. The interleukin (IL)6 and IL-1 levels in fetal blood and liver tissue as well as the myeloid differentiation primary response 88 (MyD88), transforming growth factor beta (TGF beta), and nuclear factor kappa B (NF-kB) mRNA levels in the fetal liver were decreased (P < 0.05) by the NCG or RP-Arg supplementation compared to the RES treatment. Similarly, the toll-like receptor (TLR)-4, MyD88, TGFb, and p-c-Jun N-terminal kinase (JNK) protein levels in the fetal liver were reduced (P < 0.05) in the NCG and RP-Arg-supplemented groups compared to the RES group. These results showed that dietary supplementation of RP-Arg or NCG to underfed pregnant ewes could protect against IUGR fetal hepatic inflammation via improving lipid metabolism, down-regulating the TLR-4 and the inflammatory JNK and NF-kB signaling pathways, and decreasing cytokine production in ovine fetal blood and liver tissue. (C) 2021 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
  • Küçük Resim Yok
    Öğe
    Dietary supplementation of l-arginine and N-carbamylglutamate enhances duodenal barrier and mitochondrial functions and suppresses duodenal inflammation and mitophagy in suckling lambs suffering from intrauterine-growth-restriction
    (Royal Soc Chemistry, 2020) Zhang, Hao; Ma, Yi; Wang, Mengzhi; Elsabagh, Mabrouk; Loor, Juan J.; Wang, Hongrong
    The current work aimed at investigating the effects of the dietary supplementation of N-carbamylglutamate (NCG) or l-arginine (Arg) on the duodenal mitophagy, mitochondrial function, inflammation, and barrier function in suckling lambs suffering from intrauterine-growth-retardation (IUGR). Forty-eight neonate Hu lambs were used in this study: 12 lambs with normal birth weight (NBW: 4.25 +/- 0.14 kg) and 36 lambs with IUGR (3.01 +/- 0.13 kg). Seven day old lambs were assigned to 4 treatment groups (12 lambs in each group) as follows: control group (CON), IUGR group, IUGR + Arg, and IUGR + NCG. Lambs were fed the experimental diets for 21 days from 7 days to 28 days of age. Compared with IUGR lambs, the Arg or NCG-treated IUGR lambs had a markedly higher duodenal transepithelial electrical resistance (TER) and lower fluorescein isothiocyanate dextran (FD4) (P < 0.05), respectively. The duodenal mitochondrial membrane potential change (Delta psi(m)), relative mitochondrial DNA (mtDNA) content, adenosine triphosphate (ATP) level, together with the activities of the respiratory complexes I, III, and IV were markedly higher in Arg or NCG-treated IUGR lambs than those in non-supplemented IUGR lambs (P < 0.05). The expressions of the integrity-related proteins (occludin and zonula occludens-1 (ZO-1)), antioxidant- and apoptosis-related proteins (B-cell lymphoma/leukaemia 2 (Bcl2), superoxide dismutase 2 (SOD2), catalase (CAT), and glutathione peroxidase 1 (GPx1)), and the nitric oxide-dependent pathway-related proteins (epithelial NO synthase (eNOS) and inducible NO synthase (iNOS)) were higher in NCG or Arg-supplemented IUGR lambs than those in nontreated IUGR lambs (P < 0.05). The duodenal expressions of the mitophagy-related proteins (microtubule-associated protein light chain 3 (LC3) I, LC3 II, Belin1, PTEN induced putative kinase 1 (PINK1), and Parkin) and the immune function-related proteins (myeloid differentiation factor 88 (MyD88), IL-6, nuclear factor kappa B (p65), toll-like receptor (TLR4) and TNF-alpha) were reduced (P < 0.05) in NCG or Arg-supplemented IUGR lambs compared with non-supplemented IUGR lambs. These results demonstrated that the dietary supplementation of Arg or NCG enhanced the duodenal barrier function and mitochondrial function, mitigated duodenal inflammation, and suppressed mitophagy in suckling lambs suffering from IUGR.
  • Küçük Resim Yok
    Öğe
    Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis
    (Bmc, 2024) Zhang, Hao; Zha, Xia; Zhang, Bei; Zheng, Yi; Elsabagh, Mabrouk; Wang, Hongrong; Wang, Mengzhi
    BackgroundBisphenol A (BPA) is an environmental contaminant with endocrine-disrupting properties that induce fetal growth restriction (FGR). Previous studies on pregnant ewes revealed that BPA exposure causes placental apoptosis and oxidative stress (OS) and decreases placental efficiency, consequently leading to FGR. Nonetheless, the response of gut microbiota to BPA exposure and its role in aggravating BPA-mediated apoptosis, autophagy, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and OS of the maternal placenta and intestine are unclear in an ovine model of gestation.ResultsTwo pregnant ewe groups (n = 8/group) were given either a subcutaneous (sc) injection of corn oil (CON group) or BPA (5 mg/kg/day) dissolved in corn oil (BPA group) once daily, from day 40 to day 110 of gestation. The maternal colonic digesta and the ileum and placental tissue samples were collected to measure the biomarkers of autophagy, apoptosis, mitochondrial dysfunction, ERS, and OS. To investigate the link between gut microbiota and the BPA-induced FGR in pregnant ewes, gut microbiota transplantation (GMT) was conducted in two pregnant mice groups (n = 10/group) from day 0 to day 18 of gestation after removing their intestinal microbiota by antibiotics. The results indicated that BPA aggravates apoptosis, ERS and autophagy, mitochondrial function injury of the placenta and ileum, and gut microbiota dysbiosis in pregnant ewes. GMT indicated that BPA-induced ERS, autophagy, and apoptosis in the ileum and placenta are attributed to gut microbiota dysbiosis resulting from BPA exposure.ConclusionsOur findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR.DorkkcsjvJM4thb48aSHyrVideo AbstractConclusionsOur findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR.DorkkcsjvJM4thb48aSHyrVideo Abstract
  • Küçük Resim Yok
    Öğe
    Impact of Bisphenol A exposure on maternal gut microbial homeostasis, placental function, and fetal development during pregnancy
    (Pergamon-Elsevier Science Ltd, 2024) Zha, Xia; Elsabagh, Mabrouk; Zheng, Yi; Zhang, Bei; Wang, Hongrong; Bai, Yila; Zhao, Jingwen
    Pregnancy is extremely vulnerable to external environmental influences. Bisphenol A, an endocrine-disrupting chemical, poses a significant environmental hazard to individuals of all ages and stages, particularly during pregnancy. The placenta is a temporary organ facilitating the connection between the mother and fetus. While it can detoxify certain exogenous substances, it is also vulnerable to the impacts of endocrine disruptors. Likewise, the intestinal flora is highly sensitive to exogenous stresses and environmental pollutants. The regulation of gut microbiota plays a crucial role in ensuring the health of both the mother and the fetus. The gut-placental axis connects the gut, gut microbes, placenta, and fetus. Exploring possible effects on placental function and fetal development involves analyzing changes in gut microbiota composition. Given that bisphenol A may cross the intestine and affect intestinal function, gut microorganisms, and their metabolites, as well as its potential impact on the placenta, resulting in impaired placental function and fetal development, this study aims to establish a link between bisphenol A exposure, intestinal microorganisms, placental function, and fetal development. This paper seeks to analyze the effects of maternal exposure to bisphenol A during pregnancy on the balance of the maternal gut microbiota, placental function, and fetal development, considering the key role of the gut-placental axis. Additionally, this paper proposes potential directions for future research emphasizing the importance of mitigating the adverse outcomes of bisphenol A exposure during pregnancy in both human and animal studies.
  • Küçük Resim Yok
    Öğe
    Maternal N-carbamylglutamate and L-arginine supplementations improve foetal jejunal oxidation resistance, integrity and immune function in malnutrition sheep during pregnancy
    (Taylor & Francis Ltd, 2024) Zhang, Hao; Zhang, Bei; Wu, Huisi; Zha, Xia; Elsabagh, Mabrouk; Zhao, Jingwen; Wang, Hongrong
    The present work focused on examining the function of rumen-protected L-arginine (RP-Arg) or N-carbamylglutamate (NCG) in jejunal oxidative resistance, integrity and immune function in the ovine foetal model of intrauterine growth restriction (IUGR). Thirty-two twin-bearing Hu ewes at d 35 of gestation were randomised as 4 treatment groups (n = 8 each): Control (CON), received 100% of the recommended National Research Council (NRC) for pregnancy; Restricted (RES), received 50% of the recommended NRC for pregnancy; RES + ARG, RES ewes added with 20 g/d of RP-Arg; or RES + NCG treatment, RES ewes added with 5 g/d of NCG. Foetal jejunal samples were collected on d 110 of pregnancy and were assayed for biomarkers of oxidative damage, integrity and immune function. The villus height was elevated (p < .05) within the jejunum of the foetuses of RES ewes subjected to dietary NCG or Arg supplementation relative to the RES group. RES + NCG or RES + ARG feeding decreased (p < .05) foetal jejunal tumour necrosis factor-alpha (TNF-alpha) and Interleukin (IL)-6 levels and elevated (p < .05) foetal jejunal superoxide dismutase (SOD) activity (p < .05) in relative to RES group. The Arg/NCG supplementation downregulated (p < .05) expression of gene and proteins associated with inflammatory response (TNF-alpha), upregulated (p < .05) genes and proteins associated with antioxidation (catalase and SOD2) and integrity (claudin-1) relative to those within foetal jejunum of RES group. In conclusion, Arg and NCG supplementation of RES ewes alleviates foetal jejunal oxidative stress, improves integrity, and promotes foetal intestinal development in the ovine foetus with IUGR.
  • Küçük Resim Yok
    Öğe
    Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model
    (Bmc, 2023) Zhang, Hao; Zha, Xia; Zheng, Yi; Liu, Xiaoyun; Elsabagh, Mabrouk; Wang, Hongrong; Jiang, Honghua
    Background Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. Methods In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 mu mol/L BPA, 400 mu mol/L BPA + 0.5 mu g/mL tunicamycin ( Tm; ERS activator), 400 mu mol/L BPA + 1 mu mol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/ F12 complete medium (control), for 24 h. Results In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. Conclusions In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
  • Küçük Resim Yok
    Öğe
    The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome
    (Oxford Univ Press Inc, 2024) Zheng, Yi; Zha, Xia; Zhang, Bei; Elsabagh, Mabrouk; Wang, Hongrong; Wang, Mengzhi; Zhang, Hao
    The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications. [GRAPHICS] .

| Niğde Ömer Halisdemir Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Merkez Yerleşke Bor Yolu 51240, Niğde, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim