Physical Properties of Directionally Solidified Al-1.9Mn-5Fe Alloy
Küçük Resim Yok
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Al-1.9Mn-5Fe (wt.%) alloy was prepared by adding 5 wt.% Fe to the eutectic Al-Mn alloy. This alloy undergone controlled solidification under four different growth velocities (V) in Bridgman-type furnace. Eutectic spacings (lambda), microhardness (HV), ultimate tensile strength (sigma(U)) and electrical resistivity (rho) of these alloys were determined. While the HV and sigma(U) increased with increasing V values or decreasing lambda, the elongation (delta) values decreased. In addition, relationships between these parameters were investigated using linear regression analysis. Microstructure photographs of directionally solidified samples were taken by optical microscope and scanning electron microscope (SEM). The eutectic spacings were measured from these photographs. The relationships among growth velocity (V), eutectic spacing (lambda), microhardness (HV), ultimate tensile strength (sigma(U)) and electrical resistivity (rho) were measured by suitable method and tests. The rho measurements were carried out depending on V and temperature (T). While temperature coefficient of resistivity (alpha(TCR)) was calculated from the rho-T curve, the values of thermal conductivity (K) predicted by Wiedemann-Franz (W-F) and Smith-Palmer (S-P) equations. It was found that the microstructure, microhardness, tensile strength and electrical resistivity were affected by both eutectic spacing and the growth velocity.
Açıklama
Anahtar Kelimeler
eutectic spacing, microhardness, resistivity, tensile strength, thermal conductivity
Kaynak
Journal of Materials Engineering and Performance
WoS Q Değeri
Q4
Scopus Q Değeri
Q2
Cilt
30
Sayı
3