Determining efficiency of speech feature groups in emotion detection
dc.authorid | 0000-0002-2126-8757 | |
dc.contributor.author | Polat, Goekhan | |
dc.contributor.author | Altun, Halis | |
dc.date.accessioned | 2019-08-01T13:38:39Z | |
dc.date.available | 2019-08-01T13:38:39Z | |
dc.date.issued | 2007 | |
dc.department | Niğde ÖHÜ | |
dc.description | IEEE 15th Signal Processing and Communications Applications Conference -- JUN 11-13, 2007 -- Eskisehir, TURKEY | |
dc.description.abstract | Features, extract from speech parameter are frequently used in emotion detection problem. Prosodic, MFCC, LPC and band energy feature groups are commonly used in literature to detect emotion in speech. The aim of the study is to examine the efficiency of these features groups in emotion detection problem using a SVM classifier. | |
dc.description.sponsorship | IEEE | |
dc.identifier.endpage | + | |
dc.identifier.isbn | 978-1-4244-0719-4 | |
dc.identifier.scopus | 2-s2.0-50249117767 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 463 | |
dc.identifier.uri | https://hdl.handle.net/11480/5422 | |
dc.identifier.wos | WOS:000252924600116 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | [0-Belirlenecek] | |
dc.language.iso | tr | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3 | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.title | Determining efficiency of speech feature groups in emotion detection | |
dc.type | Conference Object |