Estimation of microscale redox tolerance for Ni-based solid oxide fuel cell anodes via three-dimensional finite element modeling

dc.authoridCELIK, SELAHATTIN/0000-0002-7306-9784
dc.authoridTimurkutluk, Bora/0000-0001-6916-7720
dc.authoridKorkmaz, Habip Gokay/0000-0003-2670-7912
dc.contributor.authorAltan, Tolga
dc.contributor.authorCelik, Selahattin
dc.contributor.authorToros, Serkan
dc.contributor.authorKorkmaz, Habip Gokay
dc.contributor.authorTimurkutluk, Bora
dc.date.accessioned2024-11-07T13:31:21Z
dc.date.available2024-11-07T13:31:21Z
dc.date.issued2023
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description.abstractReduction-oxidation (redox) cycles of Ni-based anodes in solid oxide fuel cells (SOFCs) directly affect the cell performance due to breaking anode three/triple phase boundary (TPB) networks at microscale. Furthermore, these microcracks accumulate with the number of redox cycles leading to mechanical damage in the cell as a result of continuous volumetric changes during the inevitable cyclic reduction and oxidation of the nickel oxide and nickel, threatening the service life of SOFC systems. Therefore, the redox process needs to be investigated as a phenomenon at microscale to understand and minimize its effects. In this regard, we suggest a microscale approach for the redox process of Ni-based SOFC anodes in this study. For this purpose, SOFC anode microstructures with different compositions and porosities are synthetically generated by Dream.3D software and me-chanical damages due to the redox cycle are investigated via element deletion through LS-DYNA for the first time in the literature. The anodes are characterized by computing the redox tolerance based on the resultant damage and the anode composition showing the highest redox tolerance is determined among the cases considered.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.ijhydene.2022.10.019
dc.identifier.endpage1074
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85140296171
dc.identifier.scopusqualityQ1
dc.identifier.startpage1060
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2022.10.019
dc.identifier.urihttps://hdl.handle.net/11480/14789
dc.identifier.volume48
dc.identifier.wosWOS:000912952000001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofInternational Journal of Hydrogen Energy
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241106
dc.subjectSolid oxide fuel cell
dc.subjectNickel anode
dc.subjectSynthetic microstructure generation
dc.subjectRedox
dc.subjectMicro-modeling
dc.subjectElement deletion
dc.titleEstimation of microscale redox tolerance for Ni-based solid oxide fuel cell anodes via three-dimensional finite element modeling
dc.typeArticle

Dosyalar