Experimental and numerical investigation of forced convection in a double skin façade
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
MDPI AG
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Flow and heat transfer of the air cavity between two glass façades designed in the box window type of double skin façade (DSF) was evaluated in a test room which was set up for measurements in the laboratory environment and analyzed under different working conditions by using a computational fluid dynamics tool. Using data from the experimental studies, the verification of the numerical studies was conducted and the air flow and heat transfer in the cavity between the two glass façades were examined numerically in detail. The depth to height of the cavity, the aspect ratio, was changed between 0.10 and 0.16, and was studied for three different flow velocities. Reynolds and average Nusselt numbers ranging from 28,000 to 56,500 and 134 to 272, respectively, were calculated and a non-dimensional correlation between Reynolds and Nusselt numbers was constructed to evaluate the heat transfer from the cavity (except inlet and outlet sections) air to the inside environment and it could be used the box window type of DSF applications having relatively short cavities. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.
Açıklama
Anahtar Kelimeler
Cavity, Computational fluid dynamics, Double skin façade, Forced convection
Kaynak
Energies
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
10
Sayı
9