A Modified Neural Filtering Algorithm for Tracking of Chaotic Signals
dc.authorid | 0000-0002-0619-549X | |
dc.contributor.author | Menguc, Engin Cemal | |
dc.contributor.author | Acir, Nurettin | |
dc.contributor.editor | AlDabass, D | |
dc.contributor.editor | Orsoni, A | |
dc.contributor.editor | Cant, R | |
dc.contributor.editor | Yunus, J | |
dc.contributor.editor | Ibrahim, Z | |
dc.contributor.editor | Saad, I | |
dc.date.accessioned | 2019-08-01T13:38:39Z | |
dc.date.available | 2019-08-01T13:38:39Z | |
dc.date.issued | 2014 | |
dc.department | Niğde ÖHÜ | |
dc.description | 16th UKSim-AMSS International Conference on Computer Modelling and Simulation (UKSim) -- MAR 26-28, 2014 -- Cambridge, ENGLAND | |
dc.description.abstract | In this study, a modified neural filtering algorithm is presented for tracking of chaotic signals. A multilayer neural network (MLNN) structure is used in proposed design as a nonlinear adaptive filtering tool. Initially, the MLNN is linearized using Taylor series expansion and then the weight vector update rule is designed by using Lyapunov stability theory (LST) to adaptively update the weights of the MLNN. The tracking capability of the proposed algorithm is improved by using adaptation gain rate parameter "a(k)" which is iteratively adjusted itself depending on sequential tracking errors rate. The tracking ability of the proposed algorithm is tested on two chaotic signals and compared with conventional algorithms. The simulation results have supported that the proposed neural filtering algorithm achieved better performance. | |
dc.description.sponsorship | UK Simulat Soc, Asia Modelling & Simulat Sect, IEEE Comp Soc, IEEE Reg 8, European Federat Simulat Soc, European Council Modelling & Simulat, Kingston Univ, Imperial Coll,, Norwegian Univ Sci & Technol, Nottingham Trent Univ, Univ Technol Malaysia, Univ Sci Malaysia, Univ Malaysia Pahang, Univ Malaysia Sabah, Univ Technol Mara, Univ Malaysia Perlis, IEEE UK & RI, IEEE Reg 10, Machine Intelligence Res Labs, IEEE | |
dc.identifier.doi | 10.1109/UKSim.2014.10 | |
dc.identifier.endpage | 268 | |
dc.identifier.isbn | 978-1-4799-4923-6 | |
dc.identifier.issn | 2381-4772 | |
dc.identifier.scopus | 2-s2.0-84926647110 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 265 | |
dc.identifier.uri | https://dx.doi.org/10.1109/UKSim.2014.10 | |
dc.identifier.uri | https://hdl.handle.net/11480/4289 | |
dc.identifier.wos | WOS:000411854100049 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.institutionauthor | [0-Belirlenecek] | |
dc.language.iso | en | |
dc.publisher | IEEE | |
dc.relation.ispartof | 2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM) | |
dc.relation.ispartofseries | UKSim International Conference on Computer Modelling and Simulation | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Lyapunov stability theory | |
dc.subject | neural filtering algorithm | |
dc.subject | nonlinear filtering | |
dc.subject | multilayer neural network | |
dc.title | A Modified Neural Filtering Algorithm for Tracking of Chaotic Signals | |
dc.type | Conference Object |