ARTIFICIAL-NEURAL-NETWORK PREDICTION OF HEXAGONAL LATTICE PARAMETERS FOR NON-STOICHIOMETRIC APATITES
dc.authorid | 0000-0001-9517-7957 | |
dc.contributor.author | Kockan, Umit | |
dc.contributor.author | Ozturk, Fahrettin | |
dc.contributor.author | Evis, Zafer | |
dc.date.accessioned | 2019-08-01T13:38:39Z | |
dc.date.available | 2019-08-01T13:38:39Z | |
dc.date.issued | 2014 | |
dc.department | Niğde ÖHÜ | |
dc.description.abstract | In this study, hexagonal lattice parameters (a and c) and unit-cell volumes of non-stoichiometric apatites of M-10(TO4)(6)X-2 are predicted from their ionic radii with artificial neural networks. A multilayer-perceptron network is used for training. The results indicate that the Bayesian regularization method with four neurons in the hidden layer with a tansig activation function and one neuron in the output layer with a purelin function gives the best results. It is found that the errors for the predicted data of the lattice parameters of a and c are less than 1 % and 2 %, respectively. On the other hand, about 3 % errors were encountered for both lattice parameters of the non-stoichiometric apatites with exact formulas in the presence of the T-site ions that are not used for training the artificial neural network. | |
dc.identifier.endpage | 79 | |
dc.identifier.issn | 1580-2949 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 73 | |
dc.identifier.uri | https://hdl.handle.net/11480/4277 | |
dc.identifier.volume | 48 | |
dc.identifier.wos | WOS:000331494300012 | |
dc.identifier.wosquality | Q4 | |
dc.indekslendigikaynak | Web of Science | |
dc.institutionauthor | [0-Belirlenecek] | |
dc.language.iso | en | |
dc.publisher | INST ZA KOVINSKE MATERIALE I IN TEHNOLOGIE | |
dc.relation.ispartof | MATERIALI IN TEHNOLOGIJE | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | hydroxyapatite | |
dc.subject | crystal structure | |
dc.subject | artificial neural networks | |
dc.subject | multilayer-perceptron network | |
dc.title | ARTIFICIAL-NEURAL-NETWORK PREDICTION OF HEXAGONAL LATTICE PARAMETERS FOR NON-STOICHIOMETRIC APATITES | |
dc.type | Article |