Investigation of fracture characteristics of titanium/CFRP hybrid composites through experimental and numerical methods

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Growing Science

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, the delamination resistance of carbon fiber reinforced polymers (CFRP) consolidated with titanium alloy at the interface between the metal and composite was investigated experimentally and numerically. End-notched flexure (ENF) tests were performed to assess the fracture toughness (GIIC) for Mode II crack expansion of Ti6Al4V titanium alloy/CFRP composite parts. The EFN test is applied to Ti6Al4V-carbon fiber/low melt poly (aryl ether ketone) (CF/LM-PAEK) and Ti6Al4V-carbon fiber/poly (ether ketone ketone) (CF/PEKK) composites with the [0°]24 stacking sequence of unidirectional (UD) fibers. Experimental results indicate that the LM-PAEK composites exhibited Mode II strain energy release rate values 27.64 % higher than those of the PEKK composites. The finite element simulation by LS?DYNA shows good correlations with the experimental results, with an average error of 5.44 % for the PEKK and 10.58 % for the LM-PAEK, respectively. © 2024 Growing Science Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Carbon-fiber-reinforced plastic (CFRP), Delamination, End-notched flexure test (ENF), Finite element analysis (FEA), Fracture toughness, Titanium/CFRP hybrid composite

Kaynak

Engineering Solid Mechanics

WoS Q Değeri

Scopus Q Değeri

Q2

Cilt

12

Sayı

4

Künye