An experimental study on determination of the shottky diode current-voltage characteristic depending on temperature with artificial neural network
Küçük Resim Yok
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Shottky diodes are one of the important components of electronic systems. Therefore, it is very important to determine the parameters of the diodes according to the area in which they will be used. One of the most important of these parameters is the current-voltage characteristic of the diode. In this study, firstly, current values of the Schottky diode in the voltage range of -2 V to +3 V are experimentally measured in the temperature range of 100?300 K. In order to estimate the current-voltage characteristic of Shottky diode at different temperatures, a multi-layer perceptron, a feed-forward back-propagation artificial neural network was developed using 362 experimental data obtained. In the artificial neural network where temperature (T) and voltage (V) values are selected as input variables and the hidden layer has 15 neurons, the current (I) value is obtained as output. The results obtained from the artificial neural network have been found to be in good agreement with the experimental data of the Schottky diode.
Açıklama
Anahtar Kelimeler
Shottky diode, Artificial neural network, Current, Voltage, 6H?SiC
Kaynak
Physica B-Condensed Matter
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
608