Three-dimensional numerical simulation and experimental validation on ammonia and hydrogen fueled micro tubular solid oxide fuel cell performance

dc.authoridCimen, Fethi Mustafa/0000-0002-1290-1469
dc.authoridOnbilgin, Sezer/0000-0002-5349-8936
dc.authoridAlemu, Molla Asmare/0000-0003-0119-388X
dc.authoridCIGDEM, TIMURKUTLUK/0000-0002-8672-993X
dc.contributor.authorAsmare, Molla
dc.contributor.authorIlbas, Mustafa
dc.contributor.authorCimen, Fethi Mustafa
dc.contributor.authorTimurkutluk, Cigdem
dc.contributor.authorOnbilgin, Sezer
dc.date.accessioned2024-11-07T13:32:02Z
dc.date.available2024-11-07T13:32:02Z
dc.date.issued2022
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description.abstractThe main aim of this research is to investigate the performance of ammonia-powered microtubular solid oxide fuel cells in order to use ammonia as a possible candidate for eco-friendly and sustainable power generation systems. The performance of a direct ammonia-powered cell has been elucidated and validated with the experimental results of pure hydrogen gas at Nigde Omer Halisdemir University Prof. T. Nejat Veziroglu Clean Energy Research Center. For both studies, the cathode electrode is supplied with atmospheric air. The performance of anode, electrolyte, and cathode-supported microtubular solid oxide fuel cells has been compared numerically. The findings confirmed that the peak possible power densities obtained numerically using direct ammonia, hydrogen and experimentally using pure hydrogen gas are is 628.92 mW/cm(2), 622.29 mW/cm(2)' and, 589.28 mW/cm(2) respectively at the same geometrical dimensions, component materials, and operating parameters. Thus, the results of this study demonstrate that simultaneous experimental and numerical studies make a great contribution to minimizing biases due to literature data during model validation. The numerical simulation also indicates that the performance of cathode supported is superior to that of anode supported cells run with hydrogen and ammonia fuel. Likewise, parametric sweep analysis asserts that the working temperature has a greater effect than operating pressure on tubular cell performance. Therefore, the results of this study advise that ammonia will become a carbon-free alter- native fuel for solid oxide fuel cells in the coming years. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.ijhydene.2022.03.057
dc.identifier.endpage15874
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issue35
dc.identifier.scopus2-s2.0-85127568693
dc.identifier.scopusqualityQ1
dc.identifier.startpage15865
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2022.03.057
dc.identifier.urihttps://hdl.handle.net/11480/15164
dc.identifier.volume47
dc.identifier.wosWOS:000806721400002
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofInternational Journal of Hydrogen Energy
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241106
dc.subjectNumerical simulation
dc.subjectExperimental results
dc.subjectAmmonia
dc.subjectHydrogen
dc.subjectTubular solid oxide fuel cell
dc.titleThree-dimensional numerical simulation and experimental validation on ammonia and hydrogen fueled micro tubular solid oxide fuel cell performance
dc.typeArticle

Dosyalar