AGATA-Advanced GAmma Tracking Array

dc.authorid0000-0001-6014-2586
dc.authorid0000-0002-1729-0249
dc.authorid0000-0003-2241-0329
dc.authorid0000-0002-3940-0816
dc.authorid0000-0002-2915-5466
dc.authorid0000-0001-5140-9154
dc.contributor.authorAkkoyun, S.
dc.contributor.authorAlgora, A.
dc.contributor.authorAlikhani, B.
dc.contributor.authorAmeil, F.
dc.contributor.authorde Angelis, G.
dc.contributor.authorArnold, L.
dc.contributor.authorBadoer, S.
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2012
dc.departmentNiğde ÖHÜ
dc.description.abstractThe Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer. (C) 2011 Elsevier B.V. All rights reserved.
dc.description.sponsorshipEU [RII3-CT-2004-506065]; German BMBF [06K-167, 06KY2051]; Swedish Research Council; Knut and Alice Wallenberg Foundation; UK EPSRC Engineering and Physical Sciences Research Council; UK STFC Science and Technology Facilities Council; AWE plc; Scientific and Technological Research Council of Turkey [106T055]; Ankara University [05B4240002]; Polish Ministry of Science and Higher Education [DPN/N190/AGATA/2009]; Spanish MICINN [FPA2008-06419, FPA2009-13377-C02-02]; Spanish Consolider-Ingenio Programme CPAN [CSD2007-00042]; Generalitat Valenciana [PROMETEO/2010/101]; MICINN, Spain; INFN, Italy [AIC10-D-000568]; Science and Technology Facilities Council [ST/F012039/1, ST/J000094/1, ST/F004192/1, ST/J000159/1, ST/I504940/1, NuSTAR, ST/F006950/1, ST/I504916/1, ST/G000670/1, ST/F004060/1, ST/J000051/1, ST/J000108/1, ST/G000670/1 NuSTAR, ST/I504959/1, ST/G000727/1, ST/F004052/1, ST/F004184/1]
dc.description.sponsorshipAGATA and this work is supported by the European funding bodies and the EU Contract RII3-CT-2004-506065, the German BMBF under Grants 06K-167 and 06KY2051, the Swedish Research Council and the Knut and Alice Wallenberg Foundation, UK EPSRC Engineering and Physical Sciences Research Council, UK STFC Science and Technology Facilities Council, AWE plc, Scientific and Technological Research Council of Turkey (Proj. nr. 106T055) and Ankara University (BAP Proj. nr. 05B4240002), the Polish Ministry of Science and Higher Education under Grant DPN/N190/AGATA/2009, the Spanish MICINN under grants FPA2008-06419 and FPA2009-13377-C02-02, the Spanish Consolider-Ingenio 2010 Programme CPAN (contract number CSD2007-00042) the Generalitat Valenciana under Grant PROMETEO/2010/101, and research performed in the frame of the GSI-IN2P3 collaboration agreement number 02-42. A. Gadea and E. Farnea acknowledge the support of MICINN, Spain, and INFN, Italy, through the AIC10-D-000568 bilateral action.
dc.identifier.doi10.1016/j.nima.2011.11.081
dc.identifier.endpage58
dc.identifier.issn0168-9002
dc.identifier.issn1872-9576
dc.identifier.scopus2-s2.0-84155176933
dc.identifier.scopusqualityQ1
dc.identifier.startpage26
dc.identifier.urihttps://dx.doi.org/10.1016/j.nima.2011.11.081
dc.identifier.urihttps://hdl.handle.net/11480/4594
dc.identifier.volume668
dc.identifier.wosWOS:000300864200005
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.relation.ispartofNUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectAGATA
dc.subjectgamma-Ray spectroscopy
dc.subjectgamma-Ray tracking
dc.subjectHPGe detectors
dc.subjectDigital signal processing
dc.subjectPulse-shape and gamma-ray tracking algorithms
dc.subjectSemiconductor detector performance and simulations
dc.titleAGATA-Advanced GAmma Tracking Array
dc.typeArticle

Dosyalar