A combined experimental and theoretical approach effect of a benzimidazolium salt as a new corrosion inhibitor on mild steel in HCl solution
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
It is a study in which the inhibitor effect of a synthesized benzimidazole derivative organic compound on the corrosion behavior of mild steel in hydrochloric acid solution is examined both experimentally by electrochemical methods and theoretical approaches such as density function theory and simulation studies. Electrochemical experiments were performed with three different methods such as electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization for a short immersion time (1 h). It was observed that the benzimidazole-derived synthesized inhibitor, which was prepared in four different concentrations, inhibited the corrosion of mild steel in 1.0 M HCl solution very highly with the experimental method. In particular, the inhibition efficiency was over 90% at the two highest concentrations (1.0 x 10(-4) M and 5.0 x 10(-4) M). The theoretical quantum mechanical calculations also confirm the surface adsorption tendency of the molecule whose inhibitory property is examined and provide a clearer understanding of the inhibition process from a molecular perspective.
Açıklama
Anahtar Kelimeler
Benzimidazole inhibitor, Mild steel, Acidic corrosion, Polarization, Simulation study
Kaynak
Ionics
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
29
Sayı
9