Rheological and microstructural properties of FA+GGBFS-based engineered geopolymer composites (EGCs) capable of comparing with M45-ECC as mechanical performance

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, it has been aimed to obtain the fly ash + ground granulated blast furnace slag (FA GGBFS)-based engineered geopolymer composites (EGCs) having similar bearing strength and deformation capacity with the engineered cementitious composite (M45-ECC) known as M45. EGCs incorporating 70% FA and 30% GGBFS as binder were developed under three different groups in which the different ratios of alkali liquids/binder (AL/Bi) with the different content of AL + Bi. All of eight FA + GGBFS-based EGCs designed with 2.5 ratio of Na2SiO3/NaOH. FA GGBFS-based EGCs, which were kept in the mold under laboratory conditions for 24 h imme-diately after production, were kept in water at 60 degrees C until the test age. The fresh, rheogical, mechanical and microstructural properties of FA + GGBFS-based EGCs were determined. Test results indicated that FA + GGBFS-based EGCs can be developed with similar or higher compressive strength and ductility than that of M45-ECC. However, the flexural strength of M45-ECC was higher than those of all other composites. In addition, TGA/DTA and FTIR analysis supported that the excessive amount of AL + Bi content would not improve the characteristics of FA + GGBFS-based EGCs after the optimal production of C-S-H and N-A-S-H gels which acquired in geopolymerization. However, ductility continued to improve significantly as the AL + Bi content increased. Moreover, reduction of AL/Bi ratio increased the total gel content and thus, the compressive strength of composites developed.

Açıklama

Anahtar Kelimeler

FA+GGBFS-based EGCs, M45-ECC, Fresh and rheogical properties, Mechanical properties, Microstructural characteristics

Kaynak

Journal of Building Engineering

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

65

Sayı

Künye