Evalutation of performance of KNN, MLP and RBF classifiers in emotion detection problem

dc.authorid0000-0002-2126-8757
dc.contributor.authorPolat, Goekhan
dc.contributor.authorAltun, Halis
dc.date.accessioned2019-08-01T13:38:39Z
dc.date.available2019-08-01T13:38:39Z
dc.date.issued2007
dc.departmentNiğde ÖHÜ
dc.descriptionIEEE 15th Signal Processing and Communications Applications Conference -- JUN 11-13, 2007 -- Eskisehir, TURKEY
dc.description.abstractEmotion Detection has gained increasing attention and become an active research area. The problem is solved with improved feature set with different number of feature groups, by employing different classifiers in order to achieve satisfactory recognition rate. In this study, speech related features are employed to evaluate the performance of different classifiers in emotion detection problem.
dc.description.sponsorshipIEEE
dc.identifier.endpage+
dc.identifier.isbn978-1-4244-0719-4
dc.identifier.scopus2-s2.0-50249096821
dc.identifier.scopusqualityN/A
dc.identifier.startpage459
dc.identifier.urihttps://hdl.handle.net/11480/5421
dc.identifier.wosWOS:000252924600115
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isotr
dc.publisherIEEE
dc.relation.ispartof2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.titleEvalutation of performance of KNN, MLP and RBF classifiers in emotion detection problem
dc.typeConference Object

Dosyalar