Design Optimization for High-Performance Computing Using FPGA

dc.contributor.authorIsik, Murat
dc.contributor.authorInadagbo, Kayode
dc.contributor.authorAktas, Hakan
dc.date.accessioned2024-11-07T13:23:53Z
dc.date.available2024-11-07T13:23:53Z
dc.date.issued2024
dc.departmentNiğde Ömer Halisdemir Üniversitesi
dc.description10th Annual International Conference on Information Management and Big Data (SIMBig) -- DEC 13-15, 2023 -- Inst Politecnico Nacl, Centro Investigac Computac, Mexico City, MEXICO
dc.description.abstractReconfigurable architectures like Field Programmable Gate Arrays (FPGAs) have been used for accelerating computations in several domains because of their unique combination of flexibility, performance, and power efficiency. However, FPGAs have not been widely used for high-performance computing, primarily because of their programming complexity and difficulties in optimizing performance. We optimize Tensil AI's open-source inference accelerator for maximum performance using ResNet20 trained on CIFAR in this paper in order to gain insight into the use of FPGAs for high-performance computing. In this paper, we show how improving hardware design, using Xilinx Ultra RAM, and using advanced compiler strategies can lead to improved inference performance. We also demonstrate that running the CIFAR test data set shows very little accuracy drop when rounding down from the original 32bit floating point. The heterogeneous computing model in our platform allows us to achieve a frame rate of 293.58 frames per second (FPS) and a %90 accuracy on a ResNet20 trained using CIFAR. The experimental results show that the proposed accelerator achieves a throughput of 21.12 Giga-Operations Per Second (GOP/s) with a 5.21W on-chip power consumption at 100 MHz. The comparison results with off-the-shelf devices and recent state-of-the-art implementations illustrate that the proposed accelerator has obvious advantages in terms of energy efficiency.
dc.description.sponsorshipSoc Mexicana Inteligencia Artificial,N Amer Chapter Assoc Computat Linguist
dc.identifier.doi10.1007/978-3-031-63616-5_11
dc.identifier.endpage156
dc.identifier.isbn978-3-031-63615-8
dc.identifier.isbn978-3-031-63616-5
dc.identifier.issn1865-0929
dc.identifier.issn1865-0937
dc.identifier.scopus2-s2.0-85199669245
dc.identifier.scopusqualityQ4
dc.identifier.startpage142
dc.identifier.urihttps://doi.org/10.1007/978-3-031-63616-5_11
dc.identifier.urihttps://hdl.handle.net/11480/13758
dc.identifier.volume2142
dc.identifier.wosWOS:001295286100011
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofInformation Management and Big Data, Simbig 2023
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241106
dc.subjectHigh-performance computing
dc.subjectTensil AI
dc.subjectDesign optimization
dc.subjectFPGA
dc.subjectOpen-source inference accelerator
dc.titleDesign Optimization for High-Performance Computing Using FPGA
dc.typeConference Object

Dosyalar